## Implications of Western Pacific Tropical Cyclones' RSD's to the Bulk Microphysics Schemes and Quantitative Precipitation Estimation Using Machine Learning Models



## Jayalakshmi Janapati, Balaji Kumar Seela, and Pay-Liam Lin\*

Planetary Boundary Layer and Air pollution Laboratory (PBLAP) Department of Atmospheric Sciences, National Central University, Taiwan

# Introduction

>The microphysics parameterization schemes used in NWP models are

≻Bulk microphysics schemes

≻ One moment

≻ Two moment

≻ Three moment

Spectral bin microphysics schemesLagrangian particle based schemes

➢ For operational purposes one moment bulk microphysics schemes are used because of efficiency and low computational cost.

# Introduction

➤These schemes assume the particle size distribution as some statistical distribution like exponential or gamma

>In one moment schemes two gamma parameters  $\mu$  and No are

assumed as constants and the other parameter  $\Lambda$  can be diagnosed

from the prognostic variable mass mixing ratio Q.

>But the assumption is not true!

# Introduction

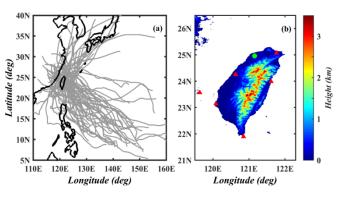
≻How to improve one moment bulk microphysics schemes:

- Prescribe No from the look-up table
- <u>Calculate the second parameter  $\Lambda$  from a relationship ( $\Lambda$ -No) obtained from the observed RSD</u>
- The third parameter  $\mu$  from the mass mixing ratio and the other two gamma parameters (  $Q,\,\Lambda,\,No$  -->  $\mu$  )

### **Data & methods**

#### Data sets used (2005-2019)

- JTWC tropical cyclones track information
- ➢ JWD data from north Taiwan (NCU)



**Fig. (a)** WP TCs' tracks **(b)** location of JWD (green filled circle) in north Taiwan.

TC rainfall @ disdrometer site:

Distance between TC center and JWD site  $\leq$  500 km

The rain drop concentration N(D) (m<sup>-3</sup> mm<sup>-1</sup>) from the JWD is given as:

$$N(D)(m^{-3}mm^{-1}) = \sum_{i=1}^{20} \frac{n_i}{A \times \Delta t \times V(D_i) \times \Delta D_i}$$

where ,  $n_i$  is the number of drops reckoned in the size bin i,  $A(m^2)$  and  $\Delta t$  are the sampling area and time,  $D_i$  (mm) is the drop diameter for the size bin i,  $\Delta D_i$  is the corresponding diameter interval (mm),  $V_j$  (m/s) is terminal velocity of drops of diameter  $D_i$ 

*R* (rainfall rate, mm h<sup>-1</sup>), *Z* (radar reflectivity, dB*Z*),  $N_t$  (total number concentration, m<sup>-3</sup>), and *LWC* (liquid water content, gm<sup>-3</sup>) are estimated: 20

$$R (\text{mm h}^{-1}) = 6\pi \times 10^{-4} \sum_{i=1}^{2} V(D)N(D) D^{3} \Delta D$$

$$Z (\text{dBZ}) = 10 \times \log_{10} \left( \sum_{i=1}^{20} N(D) D^{6} \Delta D \right)$$

$$N_{t} (\text{m}^{-3}) = \sum_{i=1}^{20} N(D) \Delta D$$

$$LWC (\text{g m}^{-3}) = \frac{\pi}{6} \rho_{w} \sum_{i=1}^{20} N(D) D^{3} \Delta D$$

$$D_{m} (\text{mm}) = \text{M4/M3} \qquad M_{n} = \int_{D_{\min}}^{D_{\max}} D^{n} N(D) dD$$

#### **Data & methods**

#### Gamma distribution and moments method:

The Gamma distribution function:  $N(D) = N_0 D^{\mu} \exp(-\Lambda D)$ The nth moment of the gamma distribution:  $M_n = \int_0^{\infty} D^n n(D) dD = N_0 \Lambda^{-(\mu+n+1)} \Gamma(\mu+n+1)$   $M_2 M_3 M_4, M_2 M_4 M_6, M_3 M_4 M_6, \text{ consecutive moments } M_n M_{n+1} M_{n+2}$ The gamma distribution parameters in terms of 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> moments (**M**\_2, **M**\_3, and **M**\_4) are expressed as (Smith and Kliche, 2005):  $\mu = \frac{Q(m+1) - (m+2)}{1-Q} \qquad \lambda = \frac{M_2 (m+\mu+1)}{M_3} \qquad N_0 = \frac{M_m \Lambda^{(m+\mu+1)}}{\Gamma(m+\mu+1)}$ 

Here,  $Q = \frac{M_2 M_4}{M_3^2}$ . With m=2, the above shape, slope and intercept parameters corresponds to 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> moments

The gamma distribution parameters in terms of  $2^{nd}$ ,  $4^{th}$ , and  $6^{th}$  moments ( $M_2$ ,  $M_4$ ,  $M_6$ ) are expressed as (Ulbrich and Atlas, 1998):

$$\mu = \frac{(7 - 11\eta) - \sqrt{\eta^2 - 14\eta + 1}}{2(\eta - 1)} \qquad \lambda = \sqrt{\frac{M_2 \Gamma(\mu + 5)}{M_4 \Gamma(\mu + 3)}} \qquad N_0 = \frac{M_4 \Lambda^{(\mu + 5)}}{\Gamma(\mu + 5)} \qquad Here, \eta = \frac{M_4^2}{M_2 M_6}$$

#### **Data & methods**

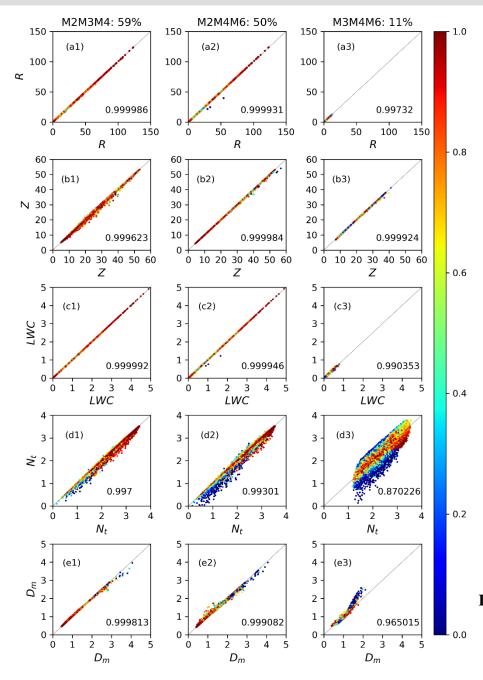
#### Gamma distribution and moments method:

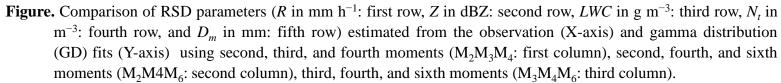
The gamma distribution parameters in terms of  $3^{rd}$ ,  $4^{th}$ , and  $6^{th}$  moments ( $M_3$ ,  $M_4$ ,  $M_6$ ) are expressed as (Ulbrich, 1983):

$$\mu = \frac{(11G - 8) + \sqrt{G(G + 8)}}{2(1 - G)} \qquad \lambda = \frac{M_3(\mu + 4)}{M_4} \qquad N_0 = \frac{M_3\Lambda^{(\mu + 4)}}{\Gamma(\mu + 4)} \qquad Here, G = \frac{M_4^3}{M_3^2 M_6}$$

The gamma distribution parameters can be expressed by any three consecutive moments (i.e.,  $M_n, M_{n+1}, M_{n+2}$ ) can be expressed as (Smith, 2003; Smith et al., 2009)

$$\mu = \frac{B(n+1) - (n+2)}{(1-D)} \qquad \Lambda = \frac{M_n(n+\mu+1)}{M_{n+1}} \qquad N_0 = \frac{M_n \Lambda^{(n+\mu+1)}}{\Gamma(n+\mu+1)} \qquad \text{Where, } B = \frac{M_n M_{n+2}}{M_{n+1}^2}$$





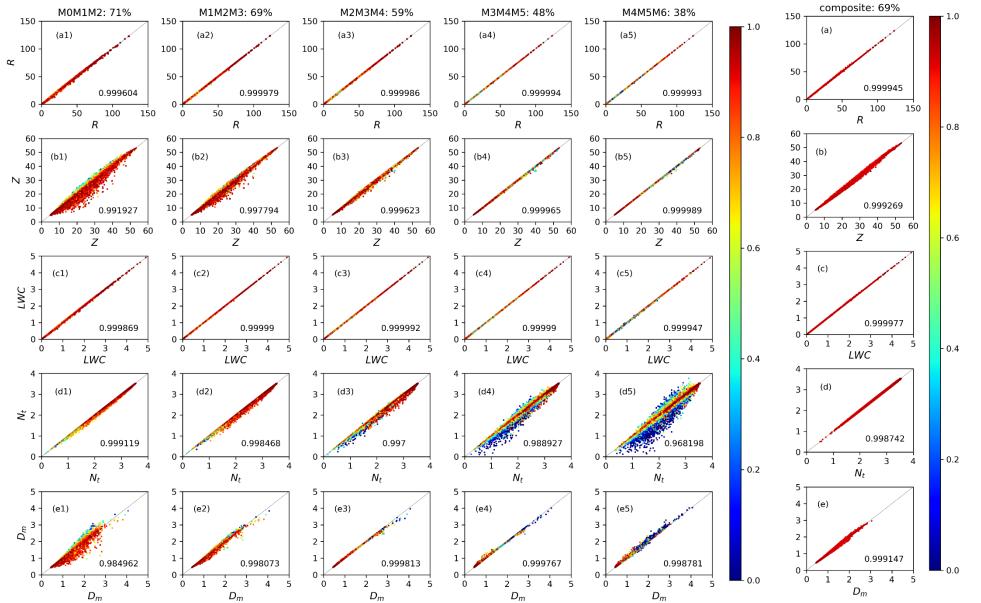


Figure. Comparison of RSD parameters (*R* in mm h<sup>-1</sup>: first row, *Z* in dBZ: second row, *LWC* in g m<sup>-3</sup>: third row,  $N_t$  in m<sup>-3</sup>: fourth row, and  $D_m$  in mm: fifth row) estimated from the observation (X-axis) and gamma distribution (GD) fits (Y-axis) using three consecutive moments (M<sub>012</sub>: first column, M<sub>123</sub>: second column, M<sub>234</sub>: third column, M<sub>345</sub>: fourth column, M<sub>456</sub>: fifth column) and hybrid moments (sixth column).

Relationships among gamma parameters ( $\mu$ ,  $\lambda$  and  $N_0$ )

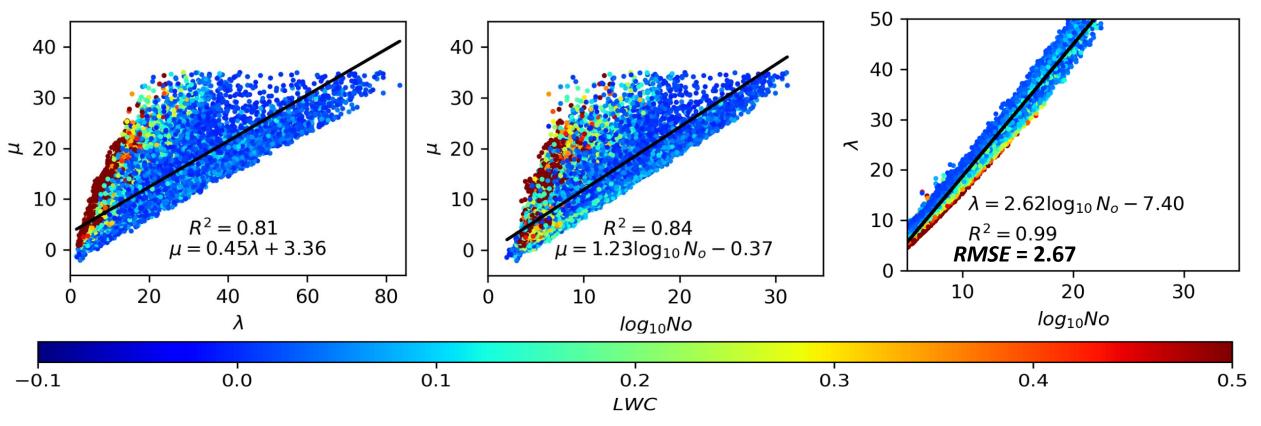


Figure. Scatter plots of shape-slope parameter ( $\mu$ -  $\lambda$ ), shape-intercept parameter ( $\mu$ -log<sub>10</sub> $N_0$ ), and slope-intercept parameter ( $\lambda$ -log<sub>10</sub> $N_0$ ), and with liquid water content (*LWC*).

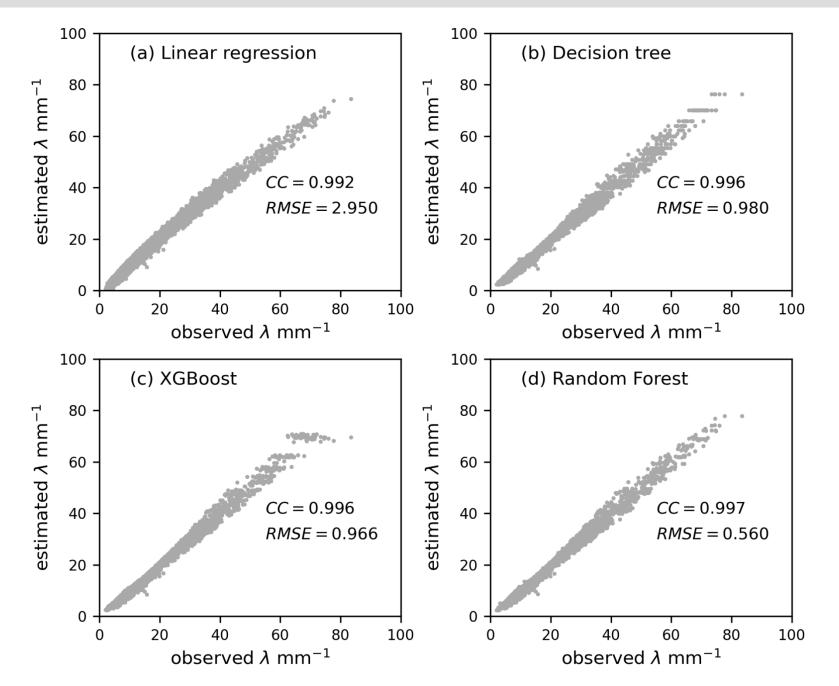
Machine learning models:

1. Decision Tree

2. XGBoost

3. Random Forest

Training data – 70% Test data – 30%

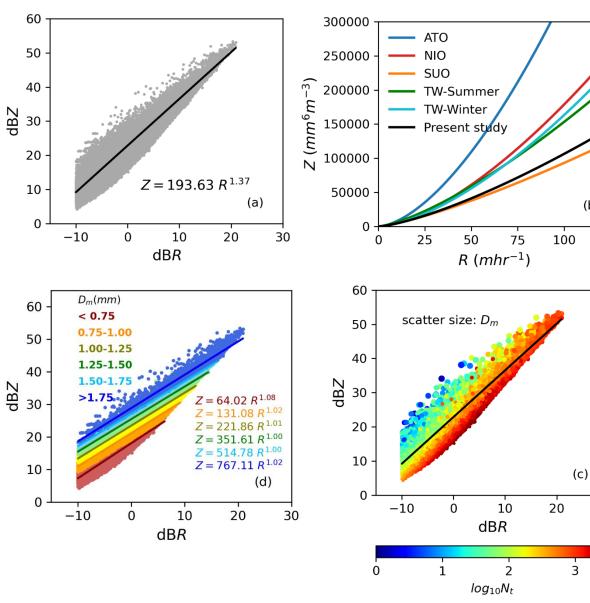


(b)

125

30

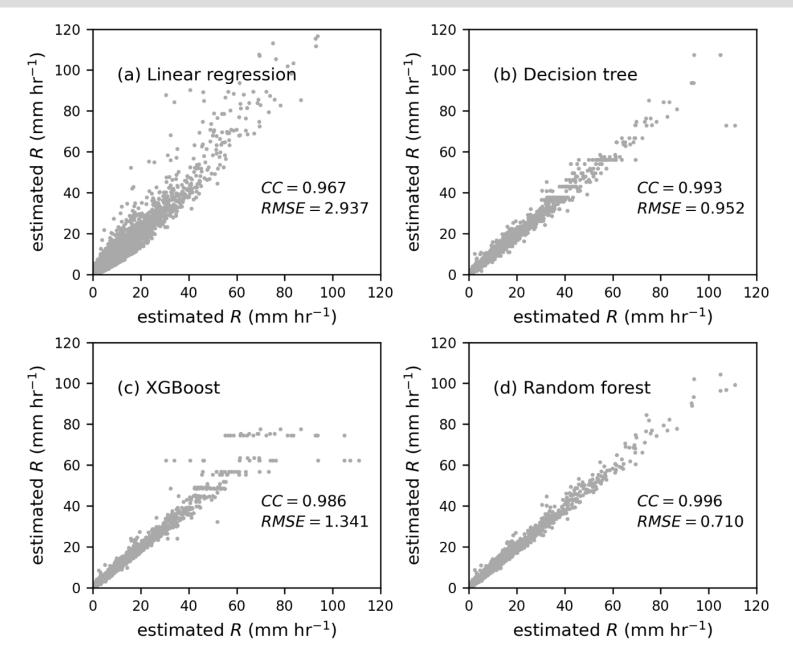
#### Radar reflectivity and rainfall rate (Z-R) relations



| Oceanic region           | Z-R relations         | Reference                             |
|--------------------------|-----------------------|---------------------------------------|
| Atlantic Ocean (ATO)     | $Z = 186.00 R^{1.63}$ | Hopper et al., (2020)                 |
| North Indian ocean (NIO) | $Z = 142.04 R^{1.55}$ | Radhakrishna and Narayana Rao, (2010) |
| Southern Ocean (SUO)     | $Z = 234.00 R^{1.3}$  | Deo and Walsh, (2016)                 |
| Taiwan-Summer            | $Z = 266.42 R^{1.38}$ | Seela et al., (2018)                  |
| Taiwan-Winter            | $Z = 129.76 R^{1.55}$ | Seela et al., (2018)                  |

Figure. Radar reflectivity and rainfall rate relations.

**Results & Discussion** 



### Conclusions

- The radar reflectivity and rainfall rate relations of Western Pacific tropical cyclones (WP TCs) are distinctly different from that of the other oceanic TCs.
- The rain fall rates estimated with Machine learning approaches (inputs:  $Z \& D_m$ ) showed superior performance over the linear regression Z-R relation.
- The RSD parameters estimated with hybrid/composite moments over the fixed three moments method are well agreed with observation.
- Among slope-shape, shape-slope, and slope-intercept parameter relations, the he three kind relationships among slope, shape and intercept parameters parameters are close to one-to-one line for Slope-intercept parameter  $(\lambda \log_{10}N_0)$ ,
- Among shape-slope parameter  $(\mu \lambda)$ , slope-intercept parameter  $(\lambda \log_{10}N_0)$ , shape-intercept parameter  $(\mu \log_{10}N_0)$  relations, the less spread in data points from one-to-one line is observed for  $\lambda \log_{10}N_0$ .
- The slope parameters estimated using machine learning approaches (inputs:  $\log_{10}N_0$  and LWC) demonstrated better results over the linear  $\lambda \log_{10}N_0$  relations.
- Present study demonstrates that, better estimates of rainfall rates and slope parameter can be achieved through random forest approach over linear regression methods.



# Thank you for listening !!

**n<sup>th</sup> Moment (M<sub>n</sub>):** 
$$M_n = \int_{D_{\min}}^{D_{\max}} D^n N(D) dD$$

| Moment | Microphysics Variable                                                                                  |  |
|--------|--------------------------------------------------------------------------------------------------------|--|
| 0      | Particle/drop concentration $(m^{-3})$ : $N = M_0 = \int_0^\infty n(D) dD$                             |  |
| 3      | Mass mixing ratio $(kg \cdot kg^{-1})$ : $Q = M_3 = \frac{\pi \rho_W}{\rho} \int_0^\infty D^3 n(D) dD$ |  |
| 6      | Radar Reflectivity $(mm^6 m^{-3})$ : $Z = M_6 = \int_0^\infty D^6 n(D) dD$                             |  |

### **Microphysics** parameterization schemes

- Bulk microphysics schemes: assume PSD/RSD/DSD to be certain functions
  - One moment (1)
  - Two moment (2)
  - Three moment (3)
- Spectral bin microphysics schemes: calculate PSDs/DSDs/RSDs by solving explicit microphysical equations
- Lagrangian particle-based schemes

ctivate Windows

## **One moment Microphysics Parameterization Schemes:**

$$\frac{\partial Q_R}{\partial t} = -V \cdot \nabla Q_R + \nabla \cdot K_m \nabla Q_R + P_R + \frac{1}{\rho} \frac{\partial (\rho U_R Q_R)}{\partial z}$$
Fallout term
$$P_R = P_{RAUT} + P_{RACW} + \dots$$

$$P_{RACW} = \frac{\pi E_{RW} n_{0R} a Q_{CW} \Gamma(3+b)}{4\lambda_R^{3+b}} \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

$$u_R = \frac{a \Gamma(4+b)}{6\lambda_R^b} \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

## Improve bulk microphysics parameterization schemes

- One-moment bulk microphysics parameterization Schemes
  - · Prescribe one parameter through a look-up table;
  - Calculate the second parameter from a relationship identified from the observations;
  - Diagnose the third parameter from the mixing ratio;
- Two-moment bulk microphysics parameterization Schemes
  - A gamma distribution can be fully determined from a relationship identified from the observations and two prognostic variables (mixing ratio and number concentration)