Short-term Wind Power Prediction: A Deep Learning Predictive Model Using Reanalysis and Ground Station Data

Presenter:

Jun-Wei Ding

Advisor: I-Yun Lisa Hsieh Ph.D.

Data Acquirement

Data Quality

Model Generalization

M/ Meteorological Data

- Reanalysis Data
 - ✓ ERA5 on single level
- Ground Station Data
- > Hybrid Data

M/ Wind Farm Data

Wind Power Generation

Capacity factor = $\frac{\text{Generation}(MkWh)}{1(h) \times \text{Capacity}(MkW)}$

- Informational Factors
 - ✓ Numerical Factors
 - ✓ Categorical Factors

M/ Ground Station Data - Component Kriging Interpolation

The standard averaging method is not applicable to **Wind Direction**.

M/ Wind Power – Wind Power Curve

Theoretical relation between wind speed and wind power

M/ Outlier Removal

Given that the data will align with the wind power curve

M/ Performance Based Clustering

M/ Deep Learning Model

CNN-LSTM

LSTM

n-meteorological factor

Timesteps = 48

R/ Data Preprocessing

R/ Consolidated Data Processing

		Processing	Wind Farm					
	Data		Guanyuan	Taichung Harbor	Changgong	Wanggong	Yunmai	Sihu
R ²	Reanalysis	Consolidated	0.958	0.951	0.953	0.973	0.943	0.938
		Individual	0.939	0.941	0.939	0.956	0.926	0.921
	Ground Station	Consolidated	0.935	0.933	0.952	0.954	0.943	0.928
		Individual	0.942	0.942	0.943	0.953	0.935	0.922
	Hybrid	Consolidated	0.944	0.940	0.953	0.951	0.945	0.940
		Individual	0.948	0.949	0.945	0.958	0.939	0.929

Future Work

- The timely acquisition of reanalysis data still need to be explored.
- A broader exploration of variables is crucial for the more precise forecasting goals.
- The **applicability** of the proposed framework to other energy sources, such as

offshore wind power or PV, still needs to be investigated.

Jun-Wei Ding | d13521023@ntu.edu.tw I-Yun Lisa Hsieh Ph.D. | iyhsieh@ntu.edu.tw

