

強注意力機制的衛星遙測雨量深度學習模式(1):模型發展歷程與2024年的精進調校

張靖亞

彭彥璁、蔡政達、蔡宗育、趙俊傑、周鑑本、汪琮、廖美慧、葉子嫈、陳雲蘭、 張育承

2024.09.04

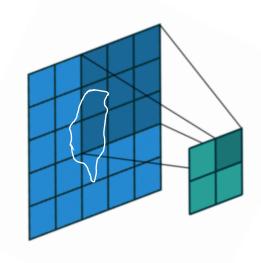
5.32 14 5.01

Outline

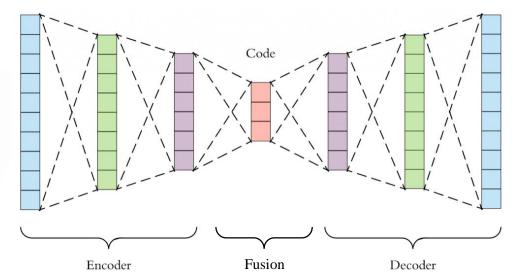
- ■模型概述
 - ▶模型演進歷程
 - ▶最終模型架構 & 特點簡介
- ■2024年度工作項目
 - ▶資料重構測試
 - ▶精進夏季模型
 - 增加訓練資料量
 - 針對強降雨進行強化
 - ▶擴大夏季的南海季風區域輸出
 - ▶ 建置冬季模型
- ■未來方向

模型概述

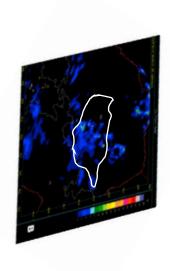
- 1.近紅外線頻道群
- 2.水氣頻道群
- 3.紅外線頻道群
- 4.頻道差群
- 5.雲物理參數群 (雲底高,雲頂高, 雲頂壓力,雲頂 溫度)
- 6.地形, 天頂角



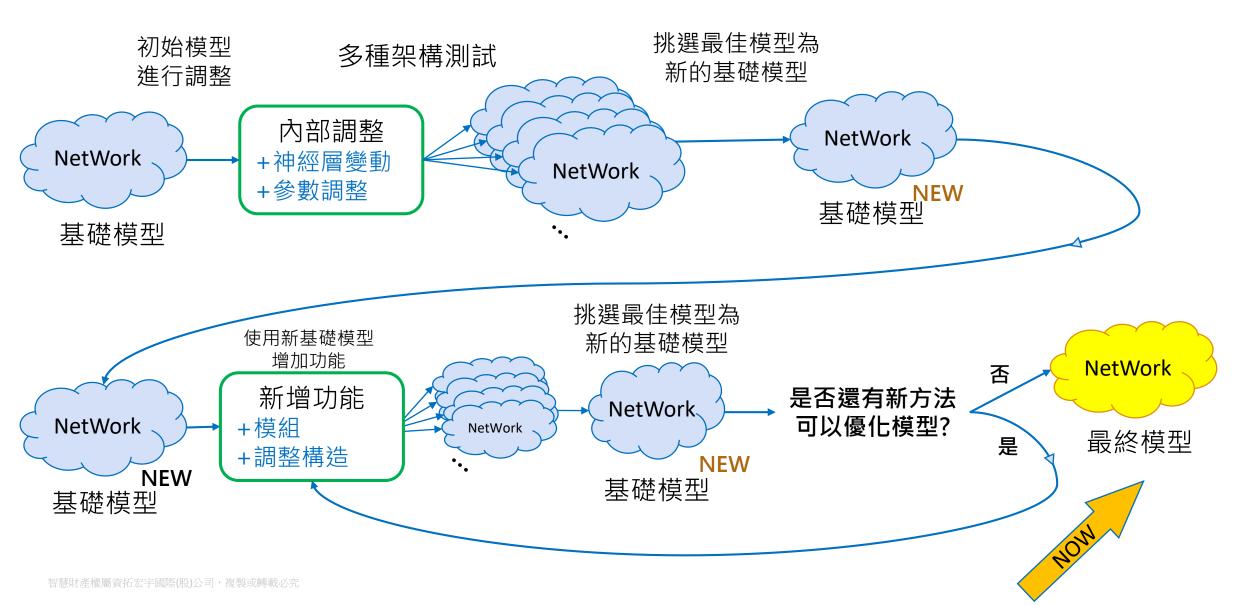
透過"遮罩"與衛星影像 進行內積(dot product), 產生"特徵"



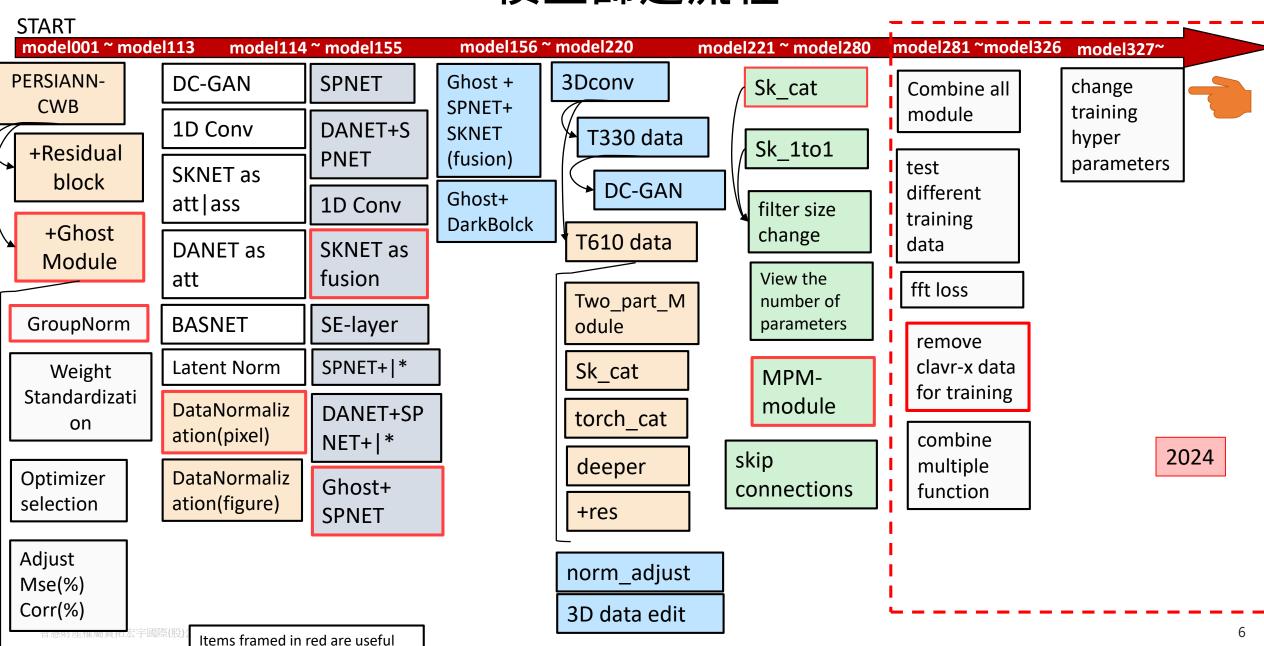
透過"編碼器" (Encoder)進 行資料降維與 拆解特徵 透過"融合" (Fusion)對 "重點"進行 權重調整 透過"解碼器" (Decoder)將 特徵轉換成另 一種影像



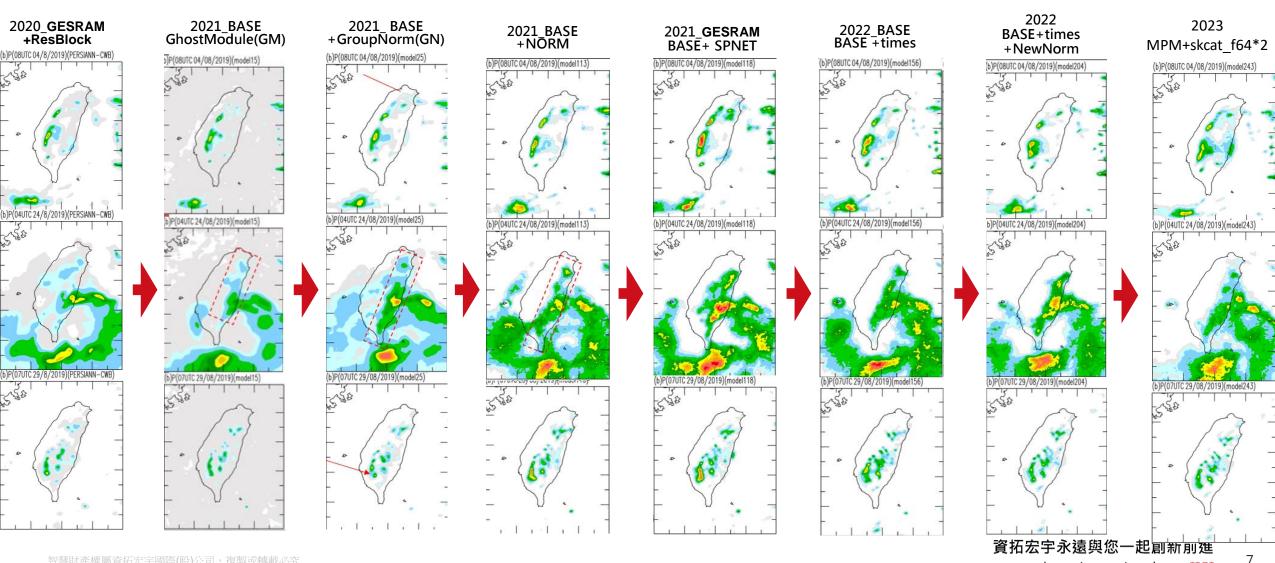
模型測試流程



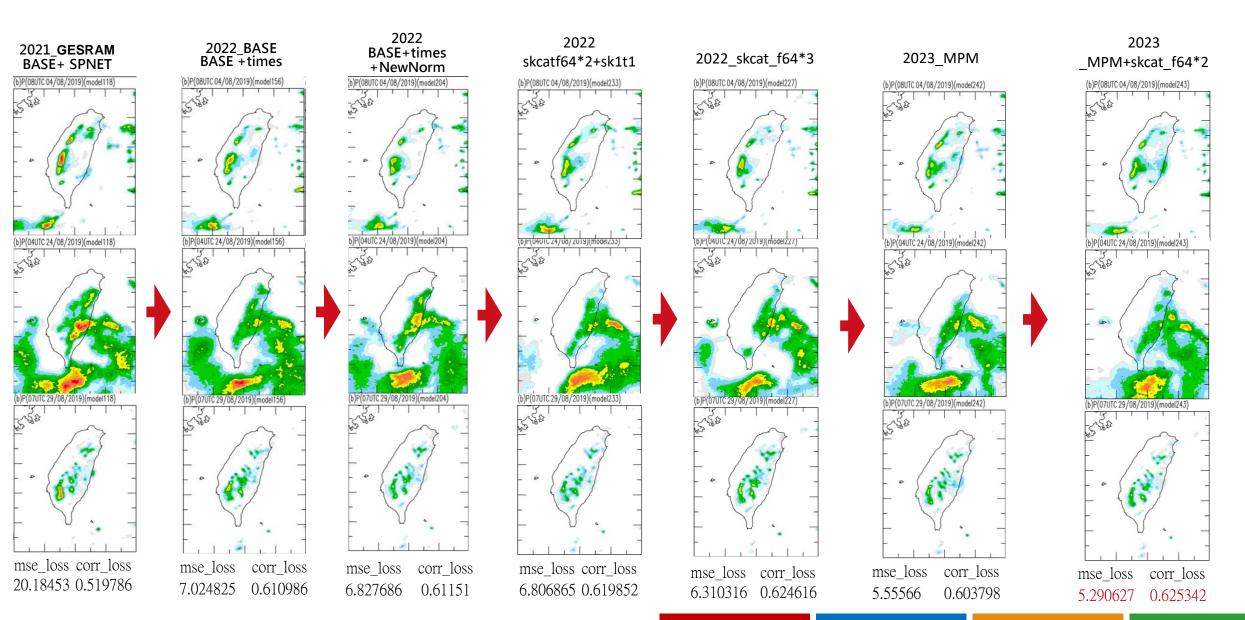
模型篩選流程



2020-2023 最佳模型演進過程

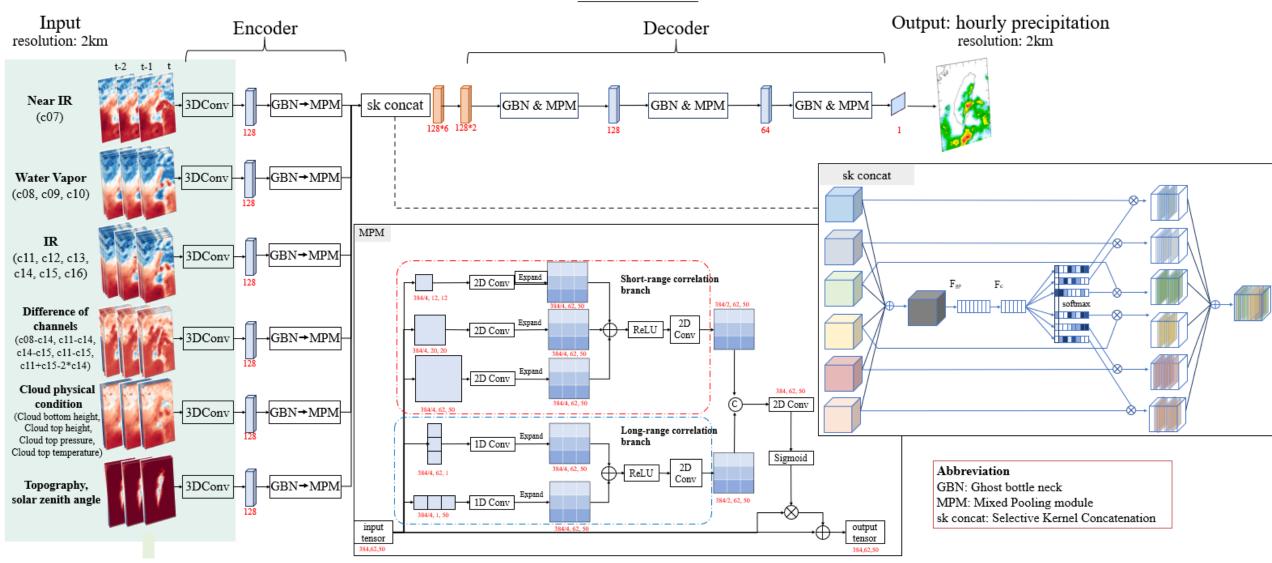


各階段最佳模型演進過程~2023期末



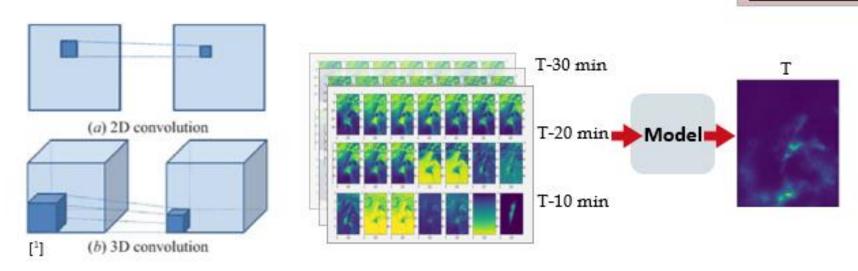
最終模型架構

Methods



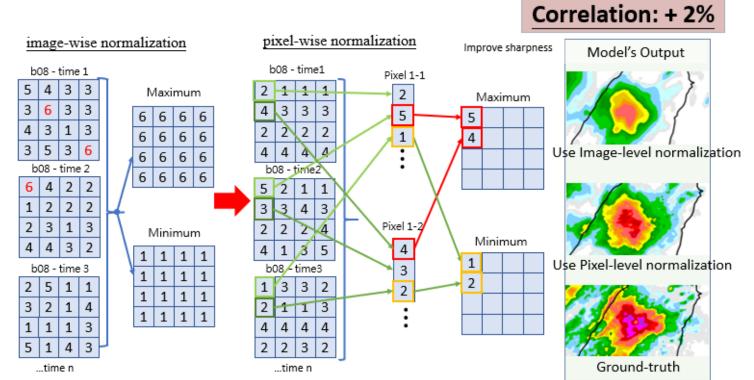
模型特點 - 接收時間資訊的3D架構

- 傳統的2D模型,其神經網路只處理圖像的「平面」資訊
- ●目前的3D模型,能看到每個**時間點**的畫面,還能理解這些畫面隨著時 間推移的變化。
- 3D convolution: consider temporal variation | Correlation: + 6%



模型特點 - 以pixel為單位的標準化方法

- ●傳統做法:以整張圖片最大、小值進行標準化,解析度低且易模糊細節
- ●pixel標準化:針對每個像素進行標準化,可提高解析度,細節更清晰
 - · Switch from image-level normalization to pixel-level normalization



【拓宏宇永遠與您一起創新前進 always innovative always IISI

模型特點 - 自製損失函數

- ●損失函數為何? 當模型做出預測時,損失函數會計算出<u>預測</u>與實際答案的差距,並告訴 模型如何改進,讓它下一次預測得更好
- ●傳統作法:於圖像生成任務中,通常僅使用*MSE*作為損失函數
- ●此專案作法:調配權重(w1, w2)以組合MSE及Correlation 參考文獻

• Loss function: consider MSE and correlation. Correlation: + 5%

$$L(x) = w_1 r \frac{1}{n} \sum (y - \hat{y})^2 + w_2 \left[1 - \left(\frac{n(\sum y \hat{y}) - (\sum y)(\sum \hat{y})}{\sqrt{[n \sum y^2 - (\sum y)^2][n \sum \hat{y}^2 - (\sum \hat{y})^2]}} \right) \right]$$
MSE
Correlation

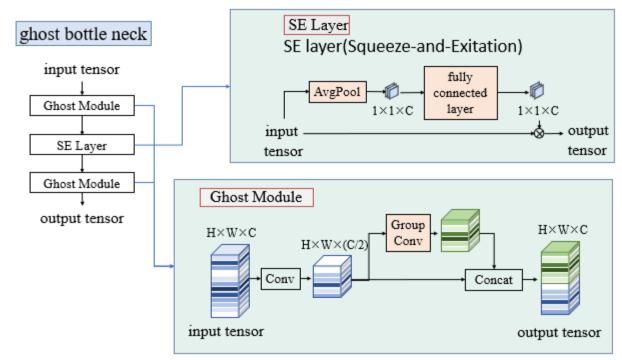
模型特點 - 使用注意力機制模塊

- ●注意力機制? 當看一張複雜的圖時,會自動把目光集中在最重要的部分。 它幫助模型「集中注意力」 在最重要的細節上
- 此專案模型使用的三種注意 力機制,用於:
 - 幫助模型學習輸入的重點
 - 資料合併時保留其重點

Use of attention mechanism modules.

Correlation: + 6%

- Mixed Pooling module (MPM)[²]
 Integrates spatial pooling and strip pooling modules. Enable model's adaptability to short- and long-range dependencies.
- Selective Kernel Concatenation (SK concat) [3]
 Rewritten Select Kernel Net (SKNet) into a framework that can accommodate multiple inputs for integration.
- Ghost bottle neck from GhostNet



2024年度工作項目

資料重構測試

·訓練資料移除CLAVR-x、地形的差異、2D模型

精進夏季模型

- 增加訓練資料量
- 針對強降雨表現進行強化
 - 訓練時的超參數調整
 - 損失函數調整

擴大夏季的南海季風區域輸出

建置冬季模型

使用模型簡介

- 今年基於過去得出的多個最佳模型(編號281、282、313),進行後續的模型強化
- 模型架構相同,差異為訓練資料的時間不同

281

313 (無clavr-x) 282

		М		
2016	5	6	7	8
2017	5	6	7	8
2018	5	6	7	8
2019	5	6	7	8
2020	5	6	7	8
2021	5	6	7	8
2022	5	6	7	8
2023	5	6	7	8

		М		
2016	5	6	7	8
2017	5	6	7	8
2018	5	6	7	8
2019	5	6	7	8
2020	5	6	7	8
2021	5	6	7	8
2022	5	6	7	8
2023	5	6	7	8

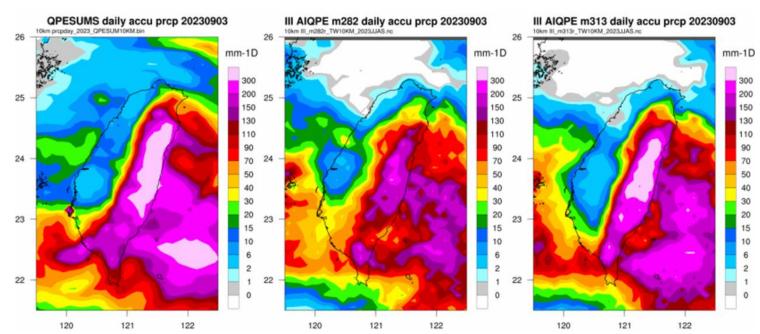
過去由於資料不如今年充足,使 用2019年8月作為模型驗證用。 於今年資料增加後亦使用同樣資 料,以評估模型表現

> 各 model 訓練、驗證的月份 黃:訓練 藍:驗證

資料重構測試

- 移除Clavr-X、地形資料 重新訓練模型
- 修改為2D模型

原始模型	模型編號	差異性	表現差異
<u>282</u>	<u>313</u>	訓練資料無CLAVR-x	表現提升
313	322	改為無地形	表現些許下降
313	325	3D改為2D模型	表現大幅下降



此階段模型經署內團隊以**2023年夏季資料**分析驗證後,

得出模型313為現階段最佳模型

詳細模型驗證與分析可參考海報:強化注意力機制的

衛星遙測雨量深度學習模式

(2):估計成效驗證 [A7-22]、

(3): 輸入端變數影響分析[A7-20]

精進夏季模型

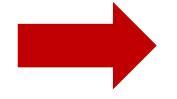
- 新增訓練資料
- 強降雨強化-損失函數組合測試&調整訓練超參數

訓練資料增加

- 更多的訓練資料能幫助模型更好地學習,從而提高預測的準確性
- 模型使用: m313 (最佳模型)
- ●資料增減狀況如下所示

訓	練
颙	證

2016	5	6	7	8
2017	5	6	7	8
2018	5	6	7	8
2019	5	6	7	8
2020	5	6	7	8
2021	5	6	7	8
2022	5	6	7	8
2023	5	6	7	8



2016	5	6	7	8
2017	5	6	7	8
2018	5	6	7	8
2019	5	6	7	8
2020	5	6	7	8
2021	5	6	7	8
2022	5	6	7	8
2023	5	6	7	8

訓練資料增加-結果

原始模型	模型編號	模型特點	訓練資料時間	訓練狀況
313	323	增加訓練資料	2016~2022 (5,6,7,8月)	完成
313	326	增加訓練資料、 人工篩除異常值	2016~2022 (5,6,7,8月)	完成

model	mse_loss	corr_loss	驗證月份	訓練天數
323	11.90421	0.080615	2023/5-8	16
326	6.753899	0.105855	2023/5-8	15

檢視模型輸出有明顯上下倒置狀況,需規劃人力進行檢驗

初步結果:

● 經人工篩選異常值後,模型表現可提升

擬定後續執行項目:

● 將其他時段資料進行人工篩選:

已篩選範圍:2016-2019(5-8月)+2020(5-6月) **待篩選**範圍:2020(7-8月),2021~2023(5-8月)

強降雨表現強化 -損失函數組合測試

執行初期以模型281作為基礎模型進行多項測試

model	fft比例(%)	mse比例(%)	corr比例(%)	mse_score	corr_score
293	100	0	0	6.787285	0.580256
305	100	0	1	6.662376	0.58066
306	100	0	5	7.405628	0.583866
307	100	0	10	8.483966	0.596404
308	100	0	20	8.056955	0.610816
314	100	0	30	8.52391	0.614017
<mark>315</mark>	100	<mark>0</mark>	<mark>40</mark>	<mark>6.693747</mark>	0.594331
320	100	0	50	9.729658	0.622666
321	100	0	99	13.61381	0.60616
298	100	1	0	8.189139	0.574325
297	100	1	1	8.251763	0.591508
296	100	1	20	8.62678	0.597352
316	100	1	30	8.839657	0.600216
<mark>317</mark>	100	1	<mark>40</mark>	<mark>8.416418</mark>	<mark>0.603738</mark>
295	100	1	50	9.804239	0.610013
294	100	1	99	14.28123	0.614302
299	100	5	0	8.389501	0.581444
301	100	5	1	9.024991	0.580791
<mark>302</mark>	100	<mark>5</mark>	<mark>20</mark>	7.985447	<mark>0.606576</mark>
318	100	5	30	15.16638	0.623334
319	100	5	40	14.84647	0.611767
303	100	5	50	10.78617	0.618715
304	100	5	99	15.69444	0.625571

- 測試原因: 圖像分析時發現使用傅立葉轉換(FFT Loss)作為損失函數,於案例中可提升 銳利度並增加整體表現
- 測試目標: 將現有損失函數與FFTloss結合,希望 提升模型整體表現
- 測試結論
 - 結果大多為corr改進,mse表現下降
 - 統整表現最佳的損失函數組合
 - mse*0%+corr*40%+100%fft
 - mse*1%+corr*40%+100%fft
 - mse*5%+corr*20%+100%fft
 - 將替換基礎模型為最佳模型(m313)使 用上述損失函數

強降雨表現強化 -損失函數組合測試

使用前頁找到的3種最佳損失函數組合進行模型313的測試

目的:使用m313 測試損失函數替換效果;結果:改良成果有限,擬後續不予採用

基 礎 模 型	模型編號	模型特點	訓練資料時間	驗證月份	mse_loss	corr_loss
1	313	使用原始損失函數	2016~2019 (5,6,7,8 月)+2020/5月	2020/6	1.14036	0.502524
313	327	損失函數: mse* <mark>0</mark> %+corr* <mark>40</mark> %+100%fft	同上	同上	1.170646	0.491309
313	328	損失函數: mse* <u>1</u> %+corr* <u>40</u> %+100%fft	同上	同上	1.17383	0.506312
313	329	損失函數: mse* <u>5</u> %+corr* <u>20</u> %+100%fft	同上	同上	1.142214	0.497812

資拓宏宇永遠與您一起創新前進 always innovative always IISI

強降雨表現強化 - 訓練超參數調整

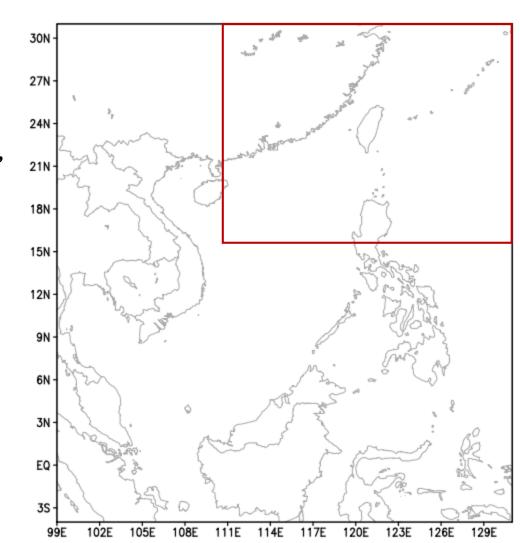
- ●目的: 調整訓練超參數設定,提升模型的輸出表現
- ●原因: 模型訓練時調整超參數的設定,對於模型的表現會有很大的影響。<u>參考文獻</u>
- ●工項:學習率調降器+adamW組合(學習率的調降方法+改用別的優化器)

原始模型	模型編號	模型特點	訓練資料時間	訓練狀況
313	330	CosineAnnealingLR + adamW	2016~2019 (5,6,7,8月)+2020/5月	訓練中
313	332	CosineAnnealingWarmRestarts+ adamW	2016~2019 (5,6,7,8月)+2020/5月	訓練中
313	333	ReduceLROnPlateau+adamW	2016~2019 (5,6,7,8月)+2020/5月	訓練中

南海季風區域輸出

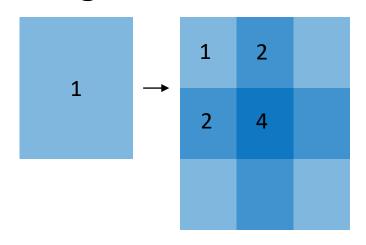
模型輸出擴充

- ●使用模型:以台灣區域為訓練資料的模型
- ●輸出區域:99E-131E,4S-31N(如右圖)
- ●解析度:0.02度(2km)
- ●圖片生成方法:以模型多次輸出不同區域, 再進行拼圖
- 拼接問題: 拚接處有斷層問題
- ●解決方法:重複產製部分區域,以部分重 疊方法進行取平均

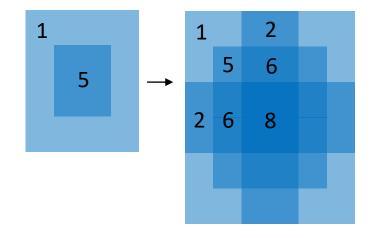


SCS 區域產製方法

Weight5

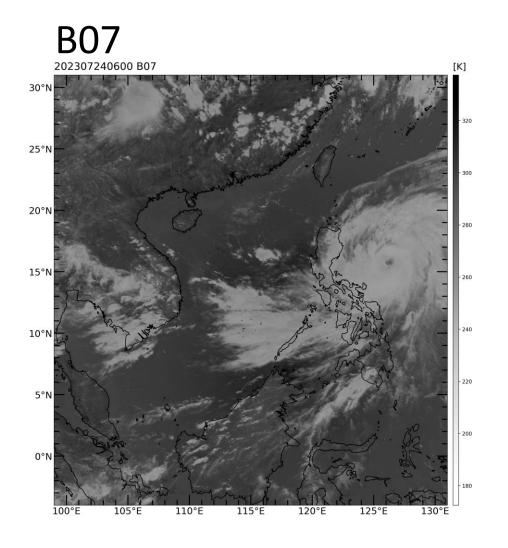


原本是全範圍不動(一倍) 再做50%堆疊

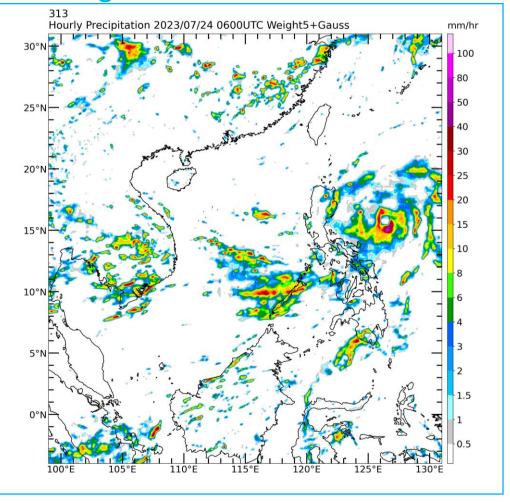


調整成中間變五倍 再做50%堆疊

●Gauss: Gaussian filter(濾除雜訊、平滑圖像)



Weight5+Gauss



建立冬季模型

建立冬季模型

由於夏季模型已取得一定的輸出成效,嘗試建立冬季模型主要分兩方向發展:

- 1. 採用夏季模型架構,重新以冬季資料進行訓練,預計<u>不同</u>季節有不同的模型
- 2. 使用以訓練完成的夏季模型,使用冬季資料進行模型微調 預計**全年度一個模型**

上述方案將於實作過程來判斷何者較為可行 **目前規劃進行中**

未來方向

未來方向

- ●完成下半年工作項目
 - 夏季模型強降雨強化
 - 冬季模型建置
- ●未來可能發展方向
 - **模型主架構**調整,替換為新發展的架構
 - 模型子模塊更新,納入近期新創的模組

Thank You

資拓宏宇永遠與您一起創新前進 always innovative always IISI

