A7-1

A Limited-Area Data-Driven Weather Model

for High-temporal Predictions

Hao-Hsuan Lo^a, Huai-Yuan Kuo^b, Buo-Fu Chen^a, and Hsuan-Tien Lin^b

^a Center for Weather and Climate Disaster Research, National Taiwan University, Taipei, Taiwan

^b Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

September 4, 2024

38th Conference on Weather Analysis and Forecasting

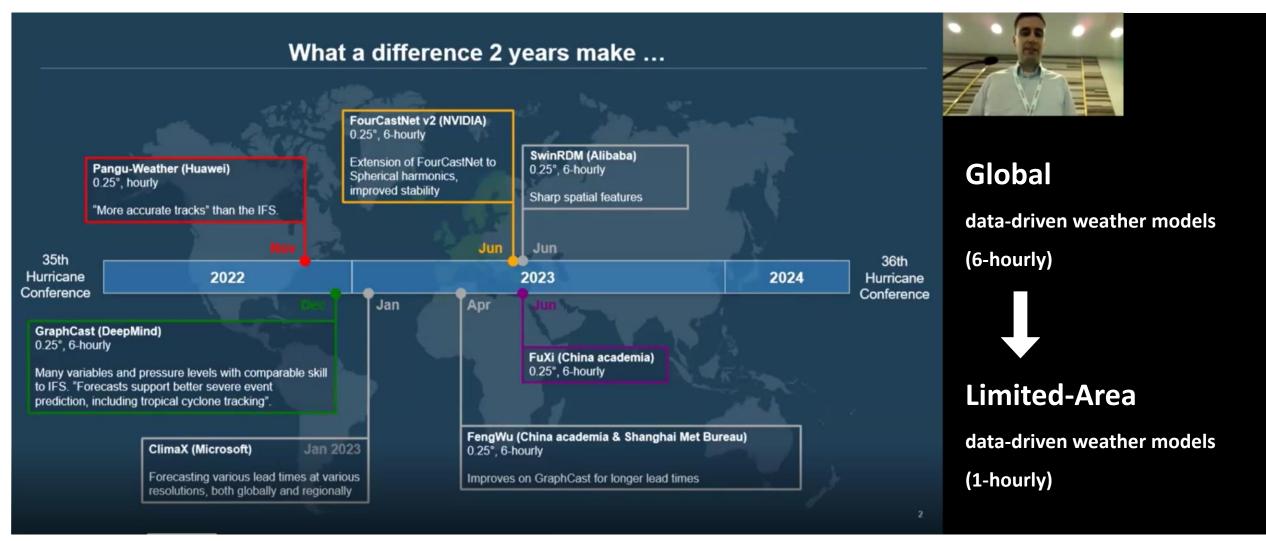
September 3 - 5, 2024, Central Weather Administration, Taipei

Int	roc	luc	tio	n

Objectives O Data and Methods

Results

Summary and Future Works



Michael Maier-Gerber, L. Magnusson, and M. Chantry (2024):

Evaluation of Tropical Cyclones in Global Data-Driven Forecasting Models.

The 36th Conference on Hurricanes and Tropical Meteorology, 18D.1.

Introduction	Objectives	Data and Methods	Results	Summary and Future Works	D 2
0	•	0000	00000000000	0	F.Z

What do we need for a **Limited-Area** data-driven weather model?

- **1.** Appropriate boundary replacement strategies
- 2. Auto-regression to 96 hours with reasonable forecast results
- 3. Competitive performance against global data-driven weather models (baseline)
- 4. Higher temporal resolution: 6-hourly \rightarrow 1-hourly

Scientific questions

1. Can we use the deep network architecture of a global data-driven weather model to build a

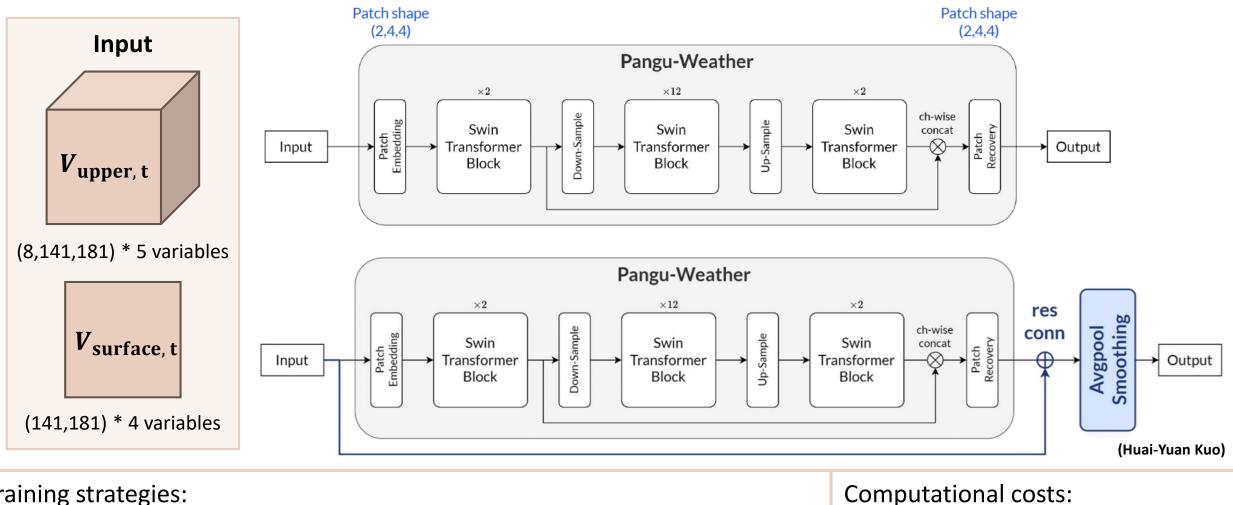
high-temporal limited-area data-driven weather model?

- 2. Are the relationships of mass fields and momentum fields in the model reasonable?
- 3. How do we deal with boundary replacement for inferencing (forecasting)?

Introduction O	Objectives O	Data and Methods ●○○○	Results 000000000000	Summary and Future Works	P.3
Data					

		40°N
Name	ERA5	s in the second
Domain	5°N - 40°N, 100°E - 145°E	35°N 30°N
Resolution	0.25° x 0.25° (about 25 km around Taiwan)	25°N
Levels	50, 150, 300, 500, 700, 850, 925, 1000 hPa	20°N
Upper-air Variables	u, v, t, q, z	15°N
Surface Variables	u10, v10, t2m, msl	10°N
Training	2013 - 2017	5°N 5°N 110°E 110°E 120°E 130°E 140°E
Validation	2019	Pros and cons of using ERA5 data?
Testing	2020	

Model Architecture



Training strategies:

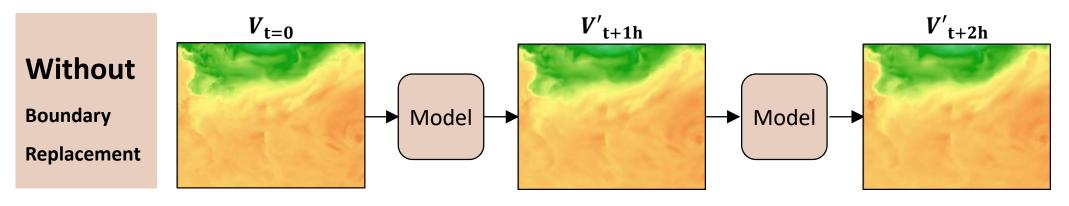
- Data is standardized. (Statistic results are calculated from 2016~2018 ERA5 data) 1. 1.
- 2. The model is optimized by L1 loss.

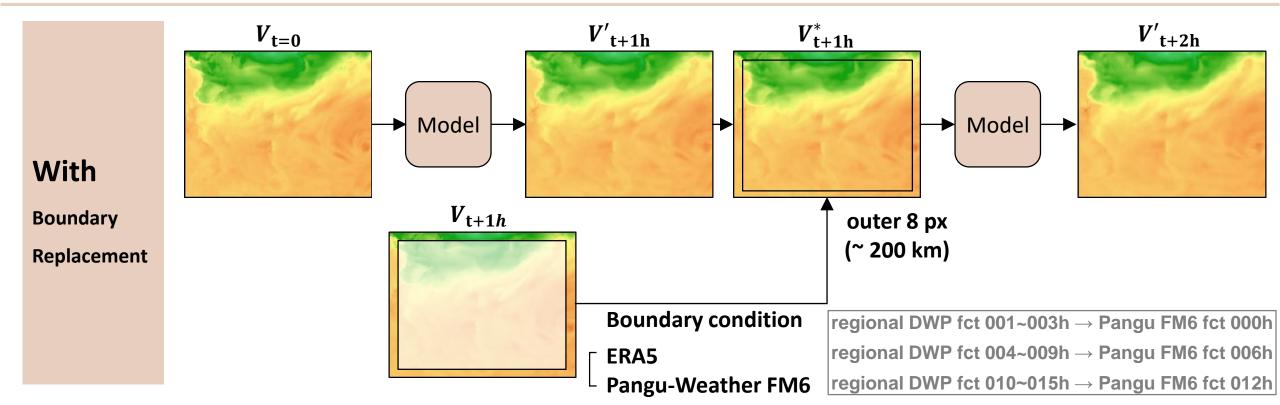
300k steps

2. ~70 h on 8 V100 GPUs on TWCC

Introduction O	Objectives O	Data and Methods $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Results	Summary and Future Works	P.5

Inferencing





Introduction	Objectives	Dat
0	0	00

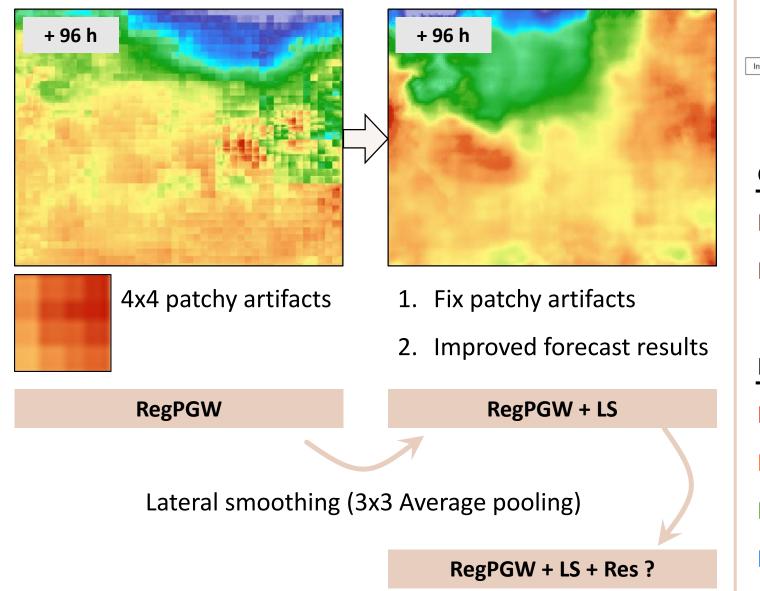
Data and Methods

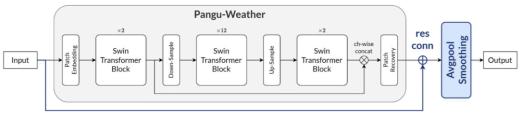
Results

Summary and Future Works

P.6

Model Improvements





Global data-driven weather model

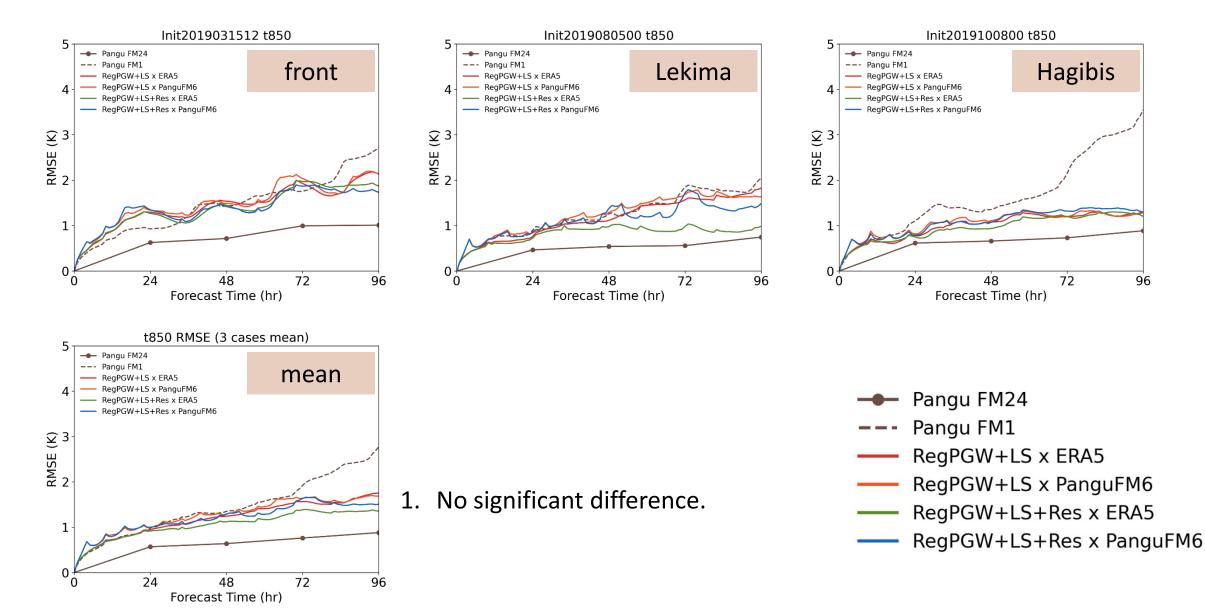
Pangu-Weather FM24

Pangu-Weather FM1

Limited-area data-driven weather model		
RegPGW + LS	X ERA5	
RegPGW + LS	X Pangu-Weather FM6	
RegPGW + LS + Res	X ERA5	
RegPGW + LS + Res	X Pangu-Weather FM6	

Introduction	Objectives	Data and Methods	Results	Summary and Future Works
0	0	0000	●0000000000	0

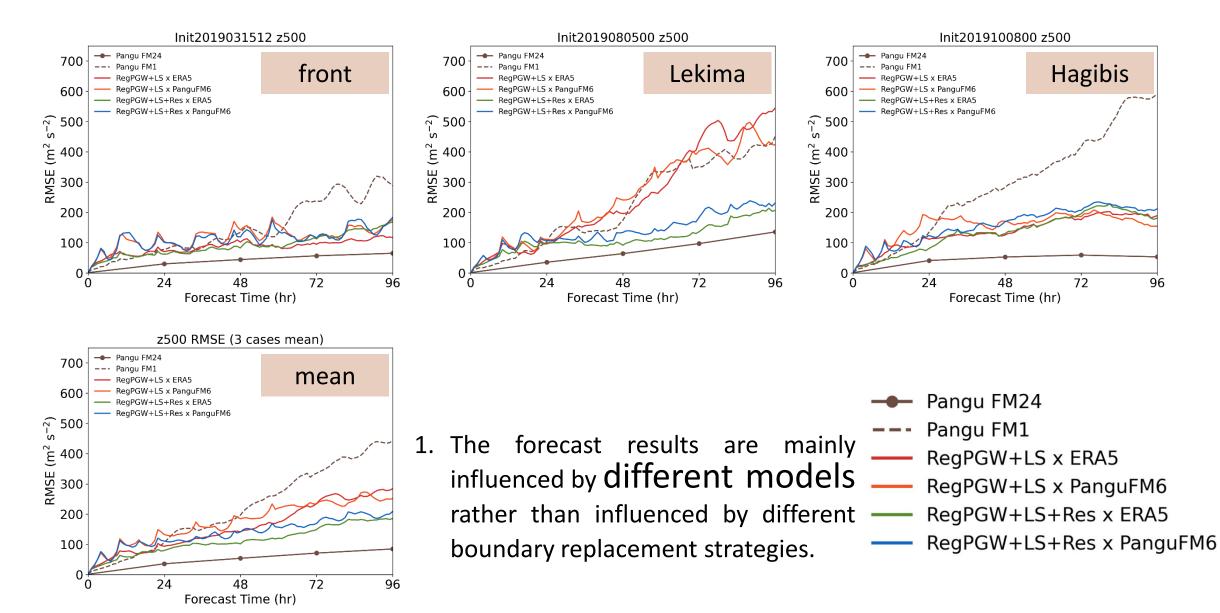
2019 Case Studies – t850 RMSE

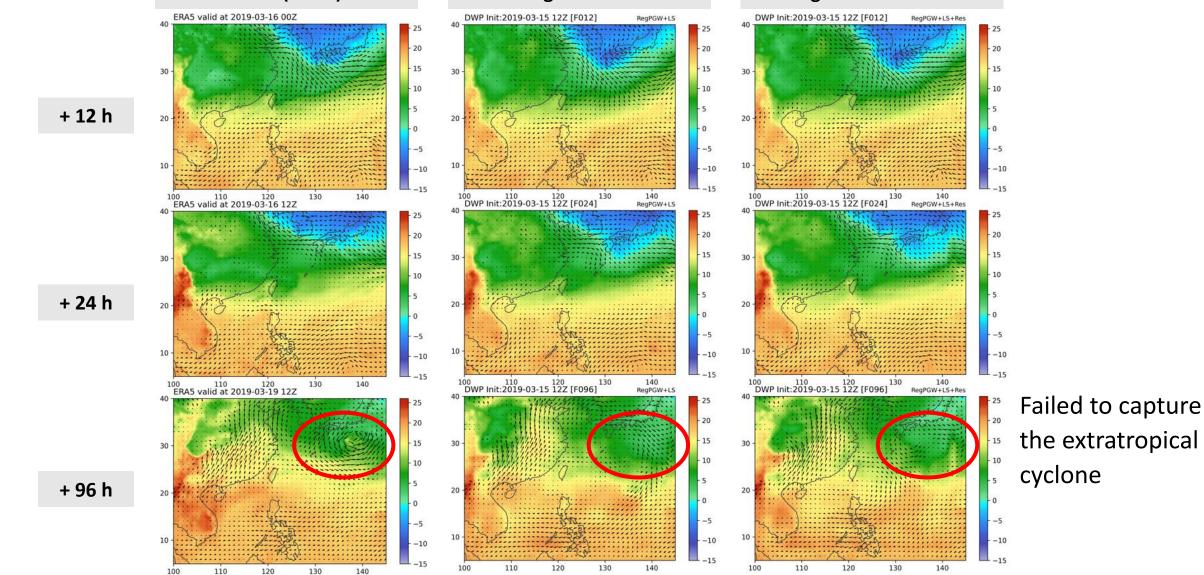


P.7

Introduction	Objectives	Data and Methods	Results
0	0	0000	0000000000

2019 Case Studies – z500 RMSE

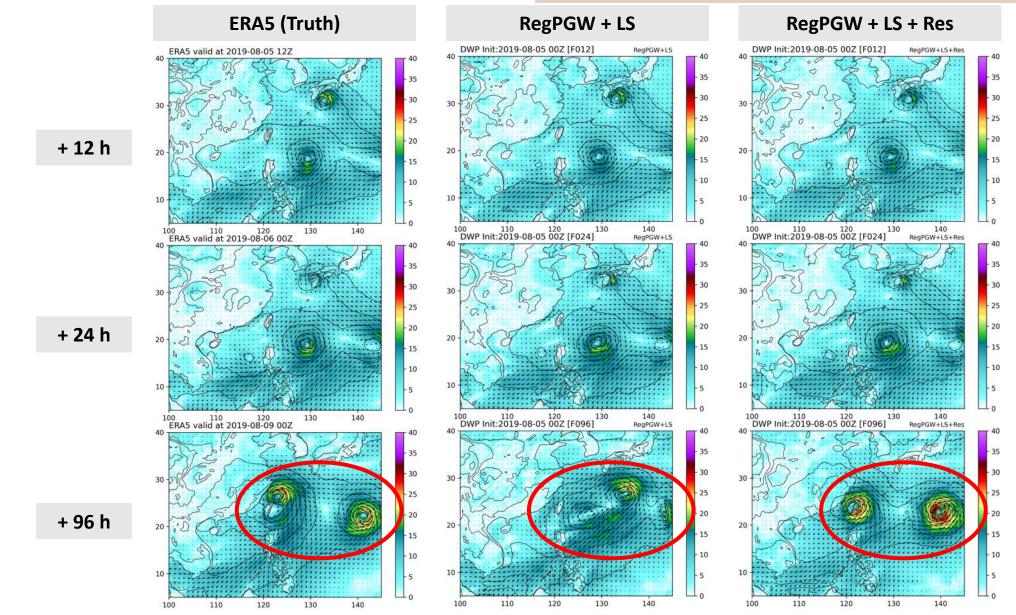




IntroductionObjectivesData and MethodsResultsSummary and FutureOOOOOOOOOO

2019 Case Studies

20190805 Lekima ${\mbox{\sc surface wind and MSLP}}$



P.10

ntroduction C	Objectives O	

Data and Methods Results

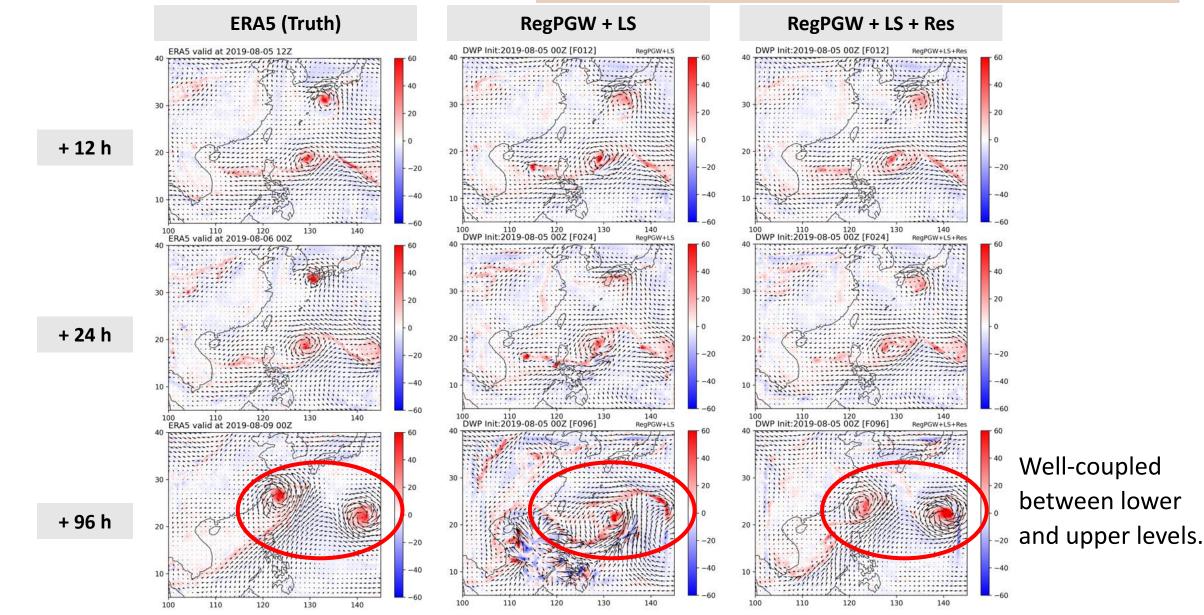
0000

Summary and Future Works Ο

P.11

2019 Case Studies

20190805 Lekima 《 500 hPa Vorticity and wind 》



Introduction	Objectives	Data and Methods
0	0	0000

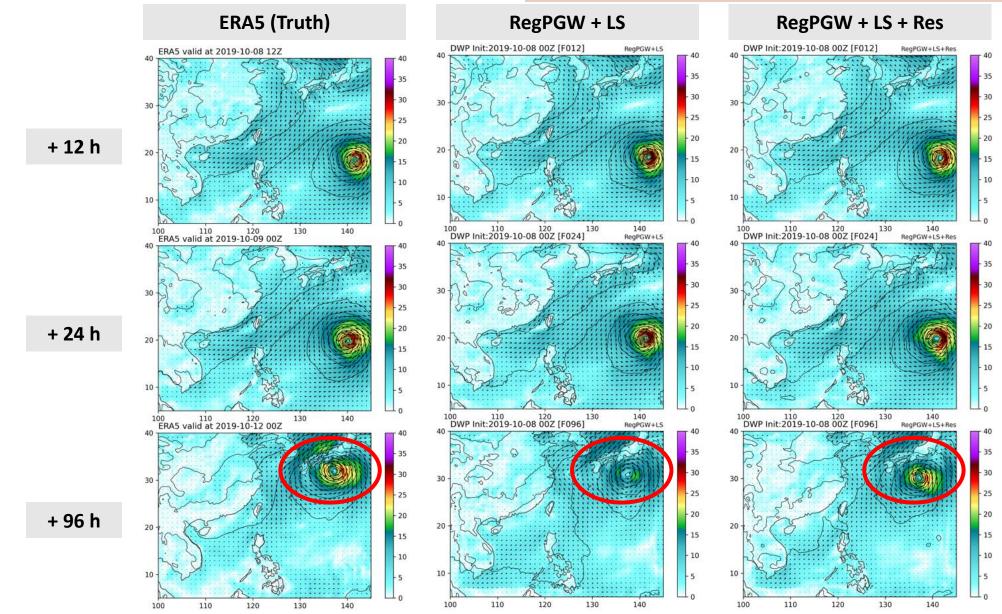
Results ○○○○○●○○○○○○

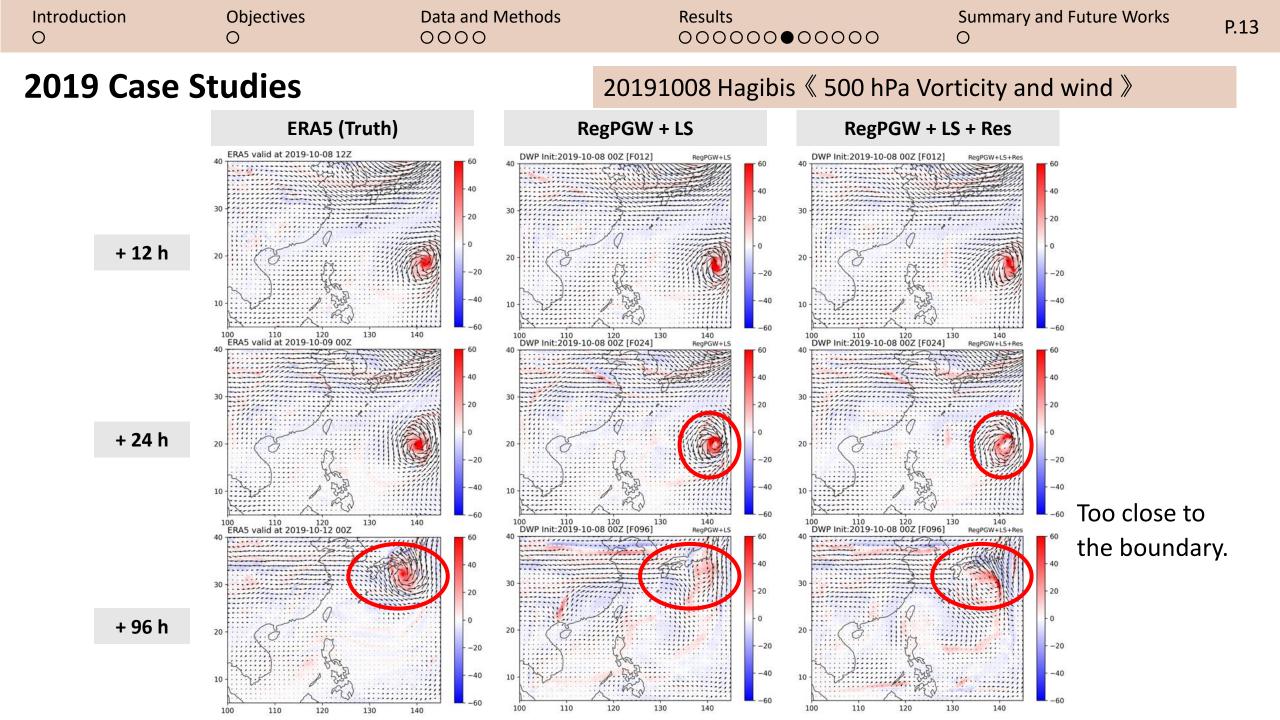
Summary and Future Works

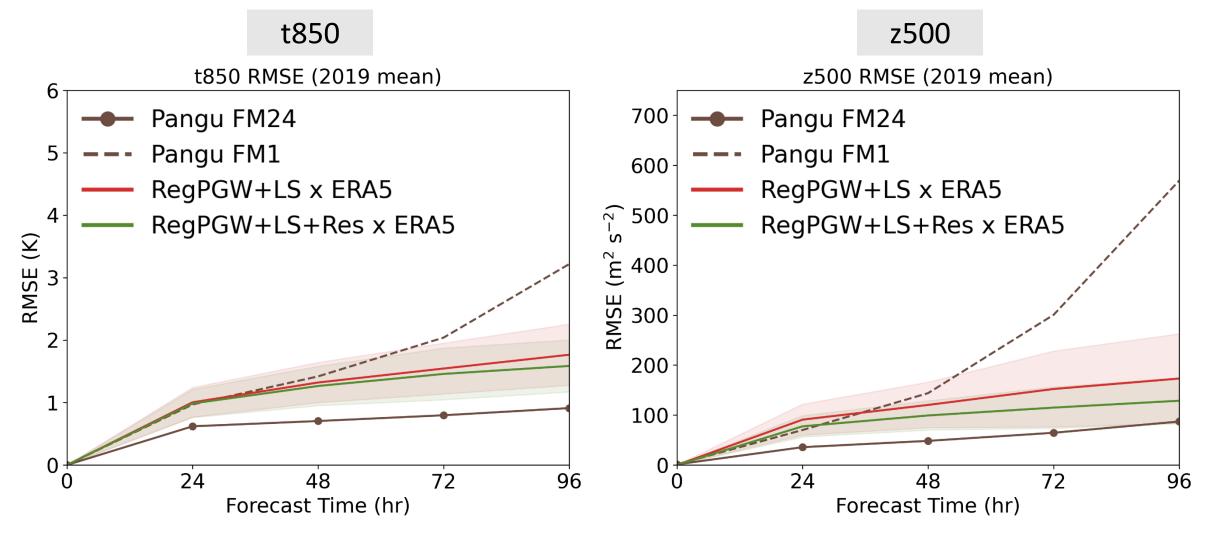
P.12

2019 Case Studies

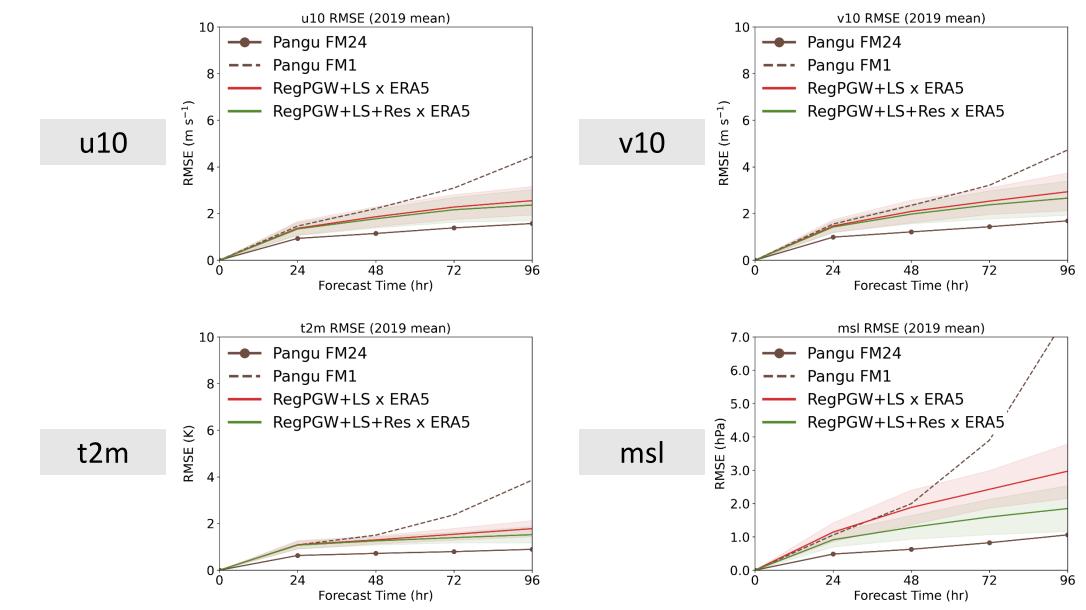
20191008 Hagibis ${\mbox{\sc surface wind and MSLP}}$ ${\sc surface wind and MSLP}$



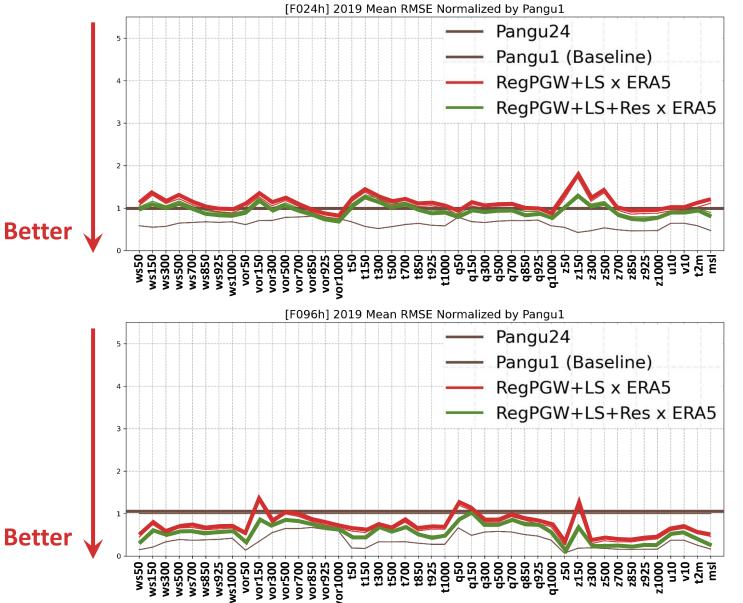




RegPGW+LS+Res: smaller RMSE and smaller stds



2019 Whole Year Evaluation – RMSE of all variables (normalized by PanguFM1)



+24h

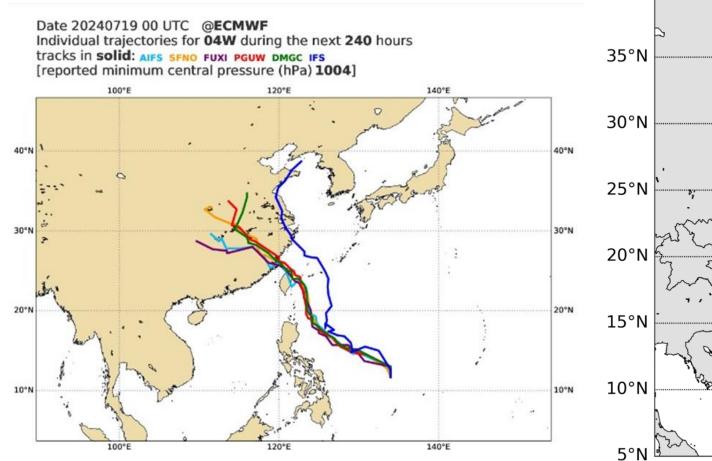
- The two models show similar forecast abilities in most variables, and the RMSEs are similar to PGW FM1.
- 2. The main difference exists in the upperlevel geopotential.

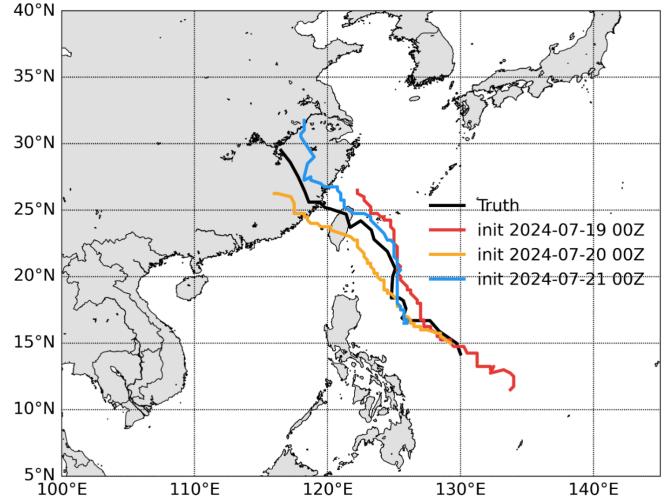
+96h

- 1. Both two models show better forecast abilities than PGW FM1 in most variables.
- RegPGW+LS+Res performs better than RegPGW+LS, especially in long-term forecasts.

Introduction O	Objectives O	Data and Methods	Results ○○○○○○○○○○○●	Summary and Future Works O	P.18

Forecast Results of Gaemi (2024)





Introduction	Objectives	Data and Methods	Results	Summary and Future Works	D 10
0	0	0000	00000000000	•	P.19

1. Can we successfully use the deep network architecture of a global data-driven weather model to build a

high-temporal limited-area data-driven weather model?

YES, with some model architecture modifications based on process-based evaluations.

- 1) Average pooling smoothing \rightarrow brings information from the boundary into the central region
- **2)** Residual connection \rightarrow more effective in learning complex representations

RegPGW+LS+Res performs better and is more stable than RegPGW+LS (smaller RMSE stds)

Process-based evaluation

- 2. Are the relationships of mass fields and momentum fields in the model reasonable?
- YES, in most cases.

However, the model performs worse at the upper levels (50, 150, 300 hPa).

Increase vertical resolution

3. How do we deal with boundary replacement during inferencing (forecasting)?

Simply replace the boundary with ERA5 or any forecast from global data-driven weather models.

Thanks for listening

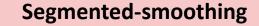
Appendix

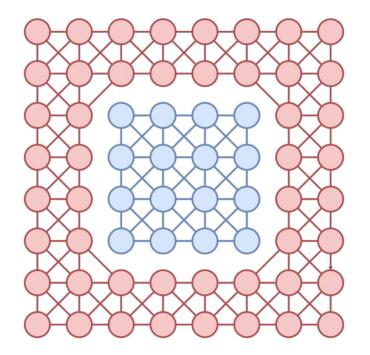
Smoothing strategies

Smoothing

The effects of AvgPool:

- 1. Smooths out the patch-to-patch difference
- 2. Brings information from the boundary into the central region





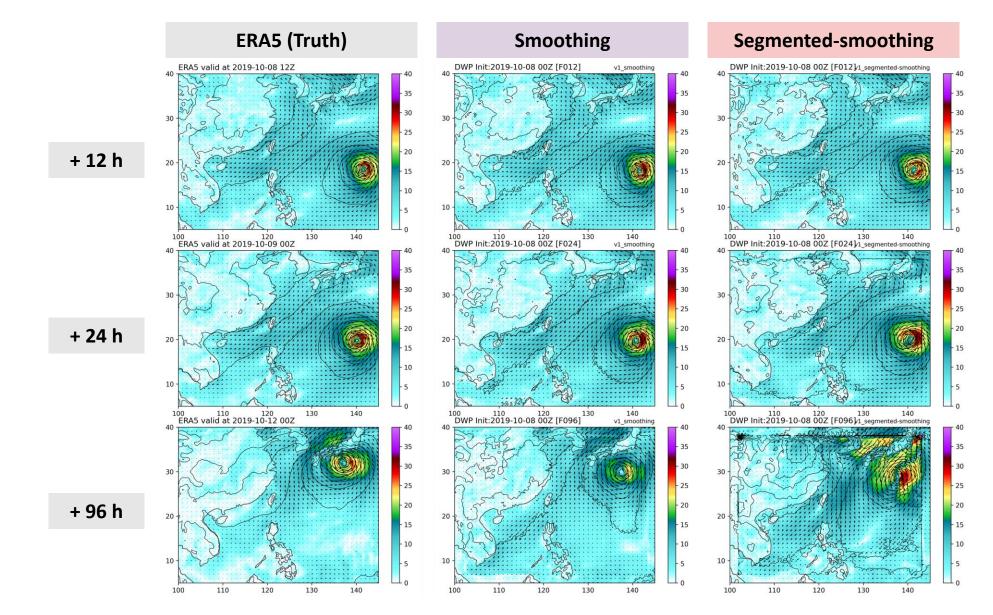
Segmented-smoothing:

There is no connection between the

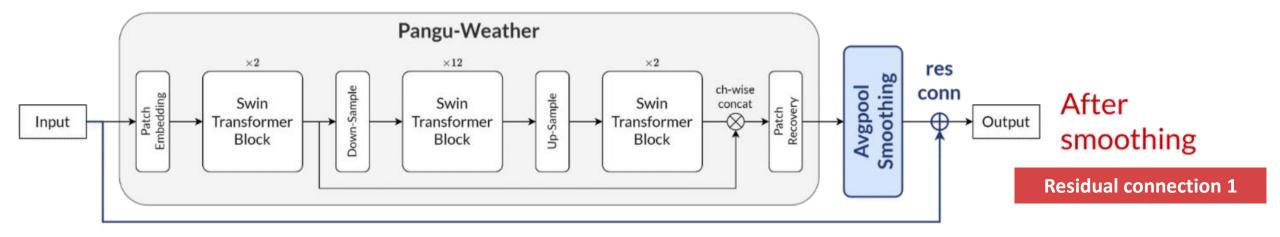
boundary and the central region

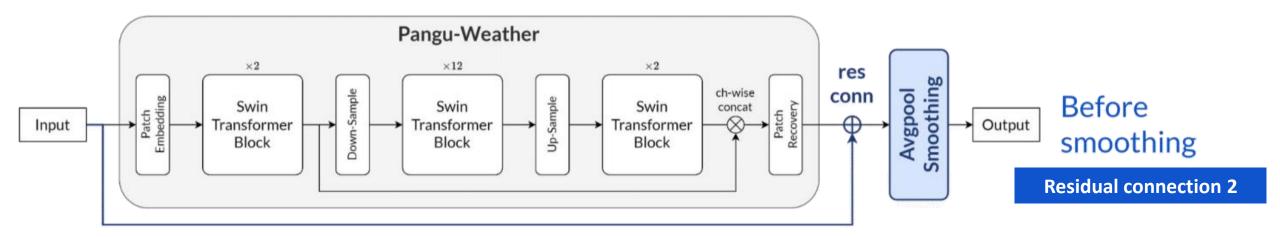
(Huai-Yuan Kuo)

Smoothing strategies



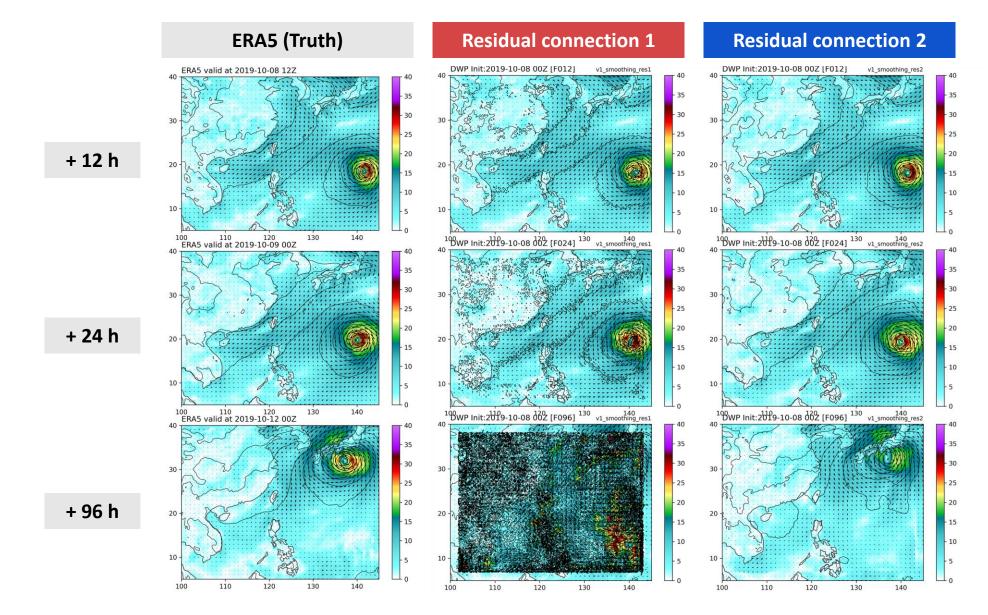
Location of residual connection

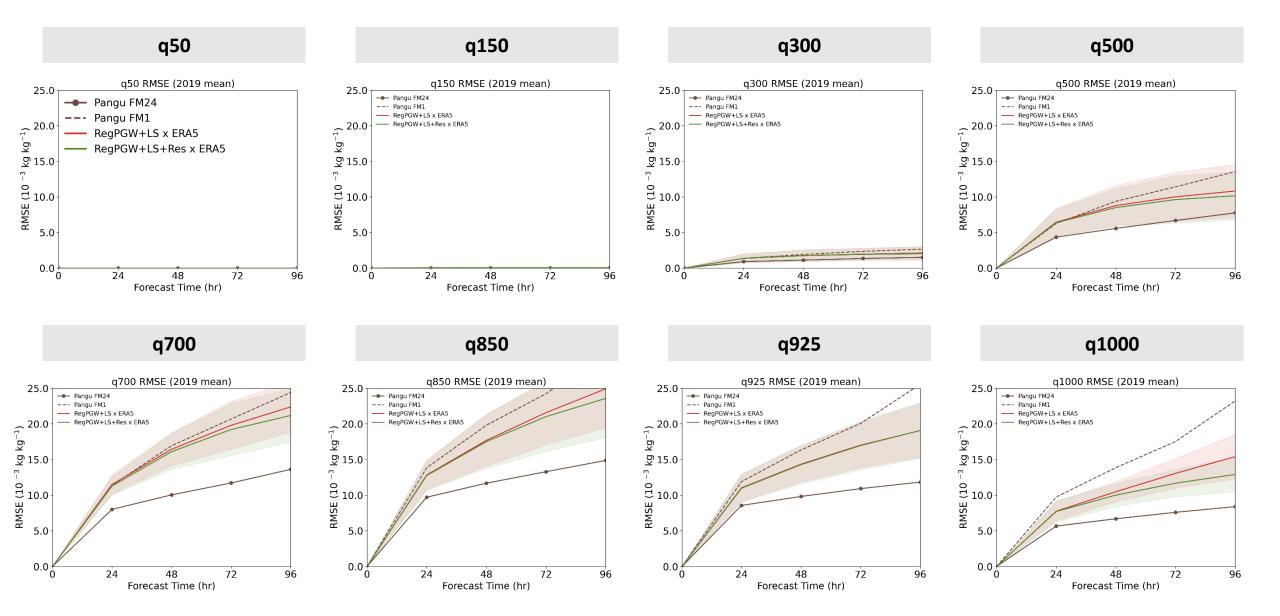


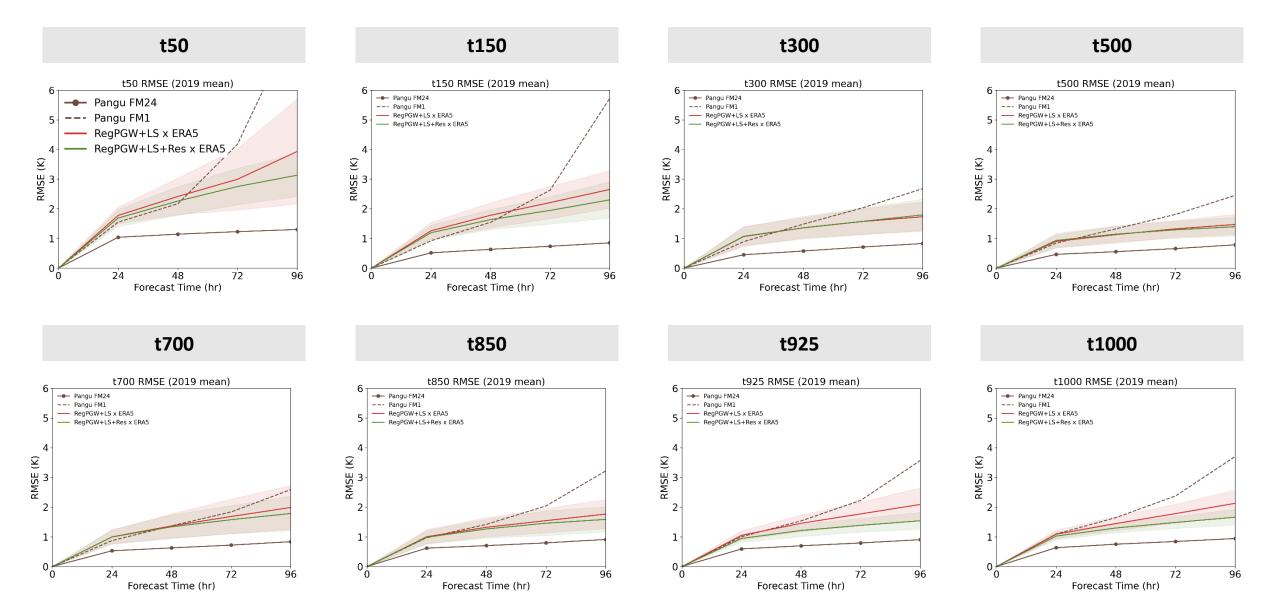


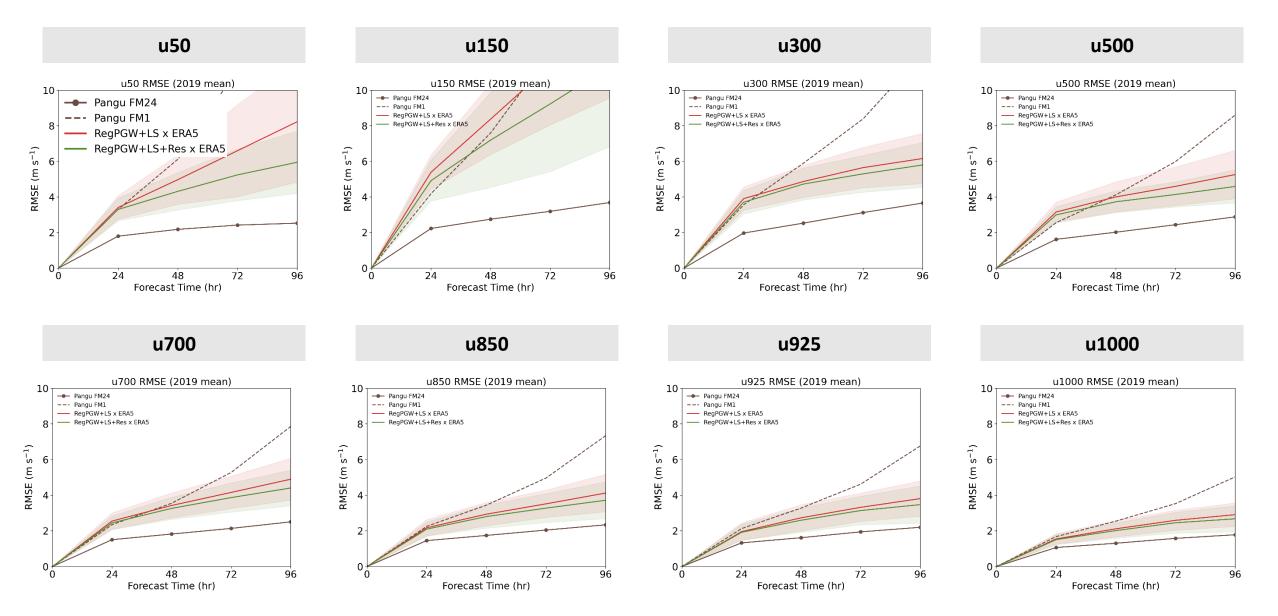
(Huai-Yuan Kuo)

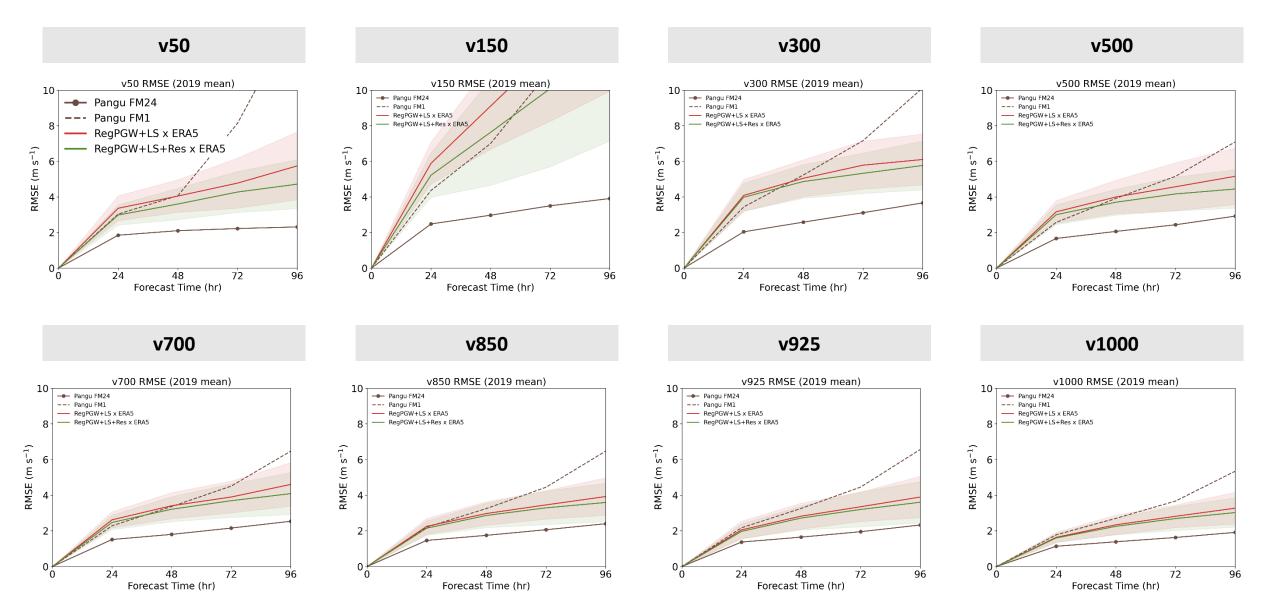
Location of residual connection

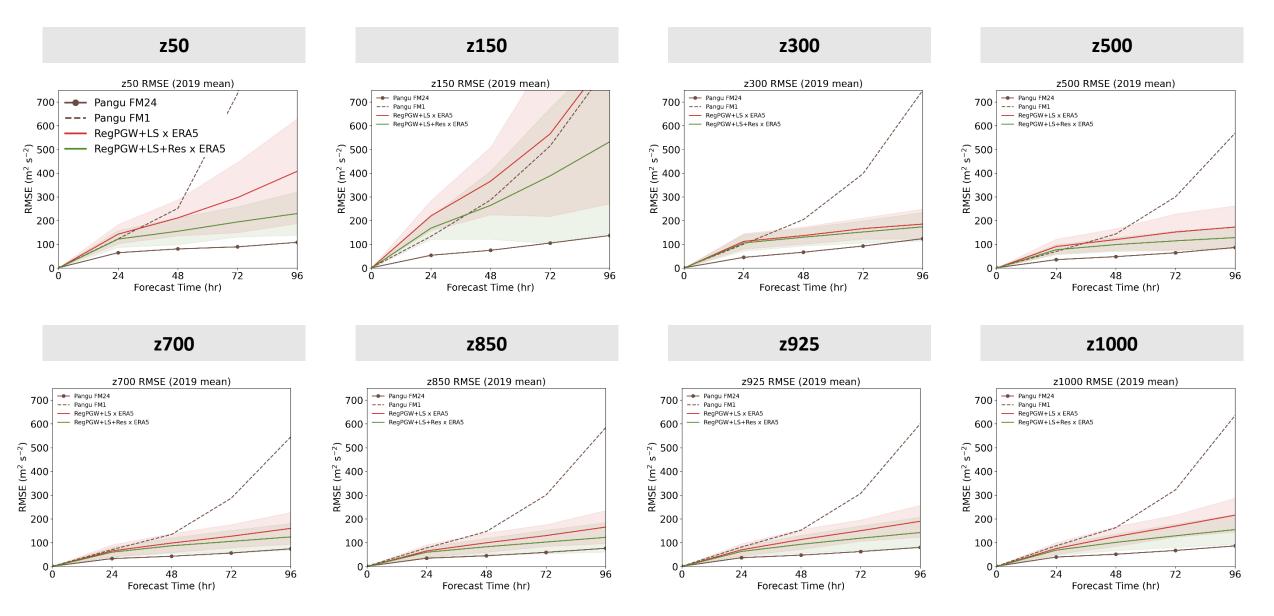












Future Works

- Increase vertical resolution.
- Carefully examine the physical processes in the model (with some validation/verification standards)