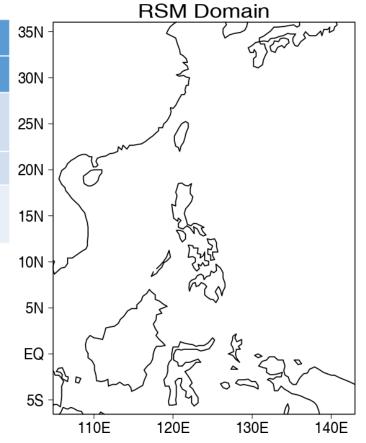


氣象署第二代氣候模式預報能力評估

李清騰、林昀靜、李澤邑、李思瑩、羅資婷、胡志文

中央氣象署 海象氣候組


113年第三十八屆天氣分析與預報研討會, 9/3-5, 交通部中央氣象署

CWA Climate Forecast System Version 2 (CWACFSv2)

- GSM(TL359L60,50km)+MOM5(50km)+RSM(12km)
- 預報時長: 9個月 (6hr, daily, monthly)

Atmospheric			
CWBGFS			
Model Resolution (Grid Point)	T _L 359L60 (720*360*60) ~55km		
Grid type	reduced Gaussian grid		
Model top	0.1mb		
Dy-core	Semi-Lagrangian (NDSL) + Semi-implicit *Non-iteration Dimensional-split Semi- Lagrangian, NDSL(Juang 2007 & Juang 2008) #		
	3 time level		
Physics			
Land model Noah Land surface model			
PBL	Eddy Diffusivity/Mass Flux(EDMF) Monin (Han et al. 2016)		
Deep/Shallow convection	Scale- and Aerosol- aware Simplified Arakawa-Schubert (Han et al. 2017 & Arakawa and Wu 2013)		
Grid scale precipitation	Zhao and Carr (1997)		
Orographic gravity wave drag	Palmer et al. (1986)		
Convective gravity wave drag	Scinocca(2003)		
Radiation	RRTMG (Mlawer et al. 1997; Iacono et al. 2000; Clough et al. 2005)		

Ocean		
GFDL MOM5		
Model resolution	0.5° X 0.5°	
Vertical levels	40	
Sea ice model	included	

氣候模式簡介

	CWACFSv2	TCWB1T1.1	TCWB2T	ECMWF-SEAS5
Resolution	720 x 360 (0.5)	360 x 180 (1)	360 x 180 (1)	900 x 451 (0.4)
Ocean	MOM5	MOM3	X	NEMO
Members	30	30	30	50
	(time-lagged)	(time-lagged)	(time-lagged)	(25 for hindcast)
Forecast	9 month	6 month	6 month	6 month
	(12 month by			(12 month by
	2,5,8,11)			2,5,8,11)

氣候模式校驗方法

Verification Metrics (WMO)

Standardized Verification System (SVS) for Long-Range Forecasts (LRF)			
長期預報標準校驗系統			
Mean climatology 平均氣候場	Rain, Temperature 雨量、溫度	Mean 平均值	
Mean variance 平均變異量	Rain, Temperature 雨量、溫度	Mean, Variance 平均值,變異度	
Mean bias 平均偏差	Rain, Temperature 雨量、溫度	Mean, Difference 平均值·差異量	
Pattern correlation coefficient (PCC) 空間形態相關係數	Rain, Temperature 雨量、温度	PCC of Mean climatology 平均氣候場空間形態相關係數	
Anomaly correlation coefficient (ACC) 距平相關係數圖	Rain, Temperature 雨量、溫度	Temporal correlation of anomaly maps 距平的時間相關係數圖	
Root mean square errors (RMSE) 均方根誤差	Rain, Temperature 雨量、溫度	RMSE of Mean bias 平均偏差值的均方根誤差	
Heidke skill score (HSS) HSS技術得分	Rain, Temperature 兩量、溫度	HSS (Tercile categories) 評量三分類機率預報技術HSS得分	
Gerrity skill score (GSS) GSS技術得分	Rain, Temperature 雨量、溫度	GSS (Tercile categories) 評量三分類機率預報技術GSS得分	
Ranked probability skill score (RPSS) RPSS技術得分	Rain, Temperature 雨量、温度	RPSS (Full probability, PDF) 評量機率預報技術RPSS得分	
Relative/Receiver Operating Characteristic score (ROC Score) ROC技術得分	Rain, Temperature 雨量、温度	ROC Score (Full probability / 10 Bins) 評量機率預報技術ROC得分	

Verification Metrics (region)

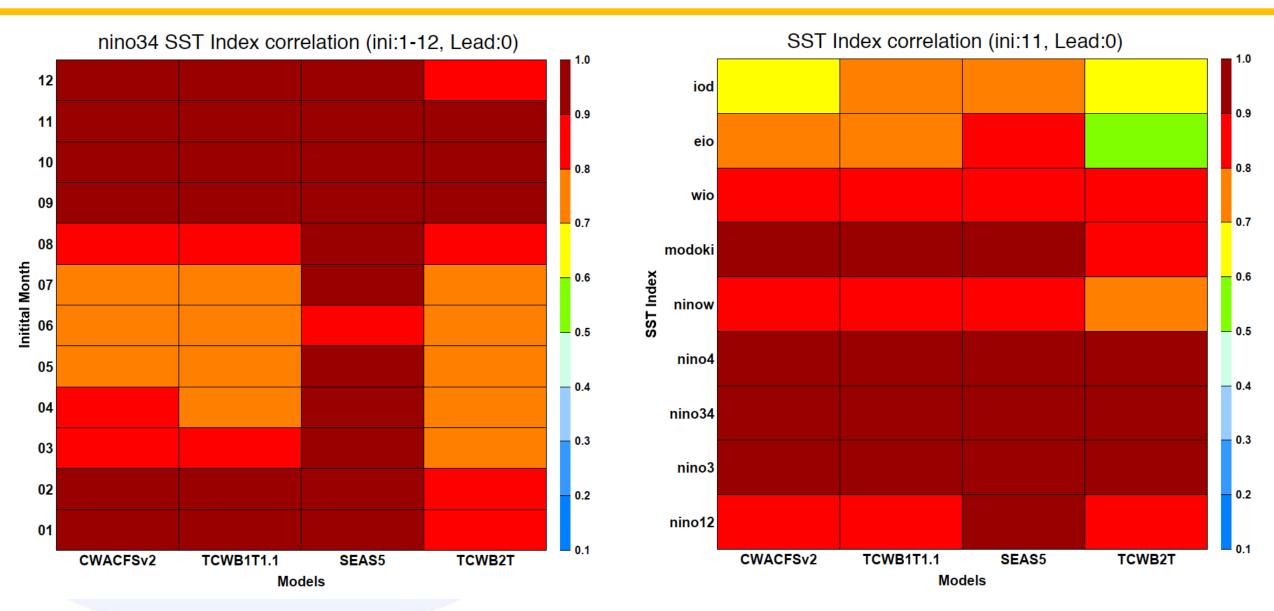
Tropics 熱帶		
Global 全球預報	Rain, Temperature 雨量、溫度	Seasonal contrast (30S-30N) 季節對比
Tropical Belt (30S-30N): AF(0-50E), IO(50E-110E), WP(110E-180E), EP(180W-80W), AO(80W-0) 熱帶及分區預報	Rain, Temperature 雨量、温度	RMSE, ACC 均方根誤差,距平相關係數圖
Taiwan and the surrounding monsoon region (TAIWAN) (0-40N, 100E-150E) 台灣附近季風區預報	Rain, Temperature 雨量、溫度	RMSE, ACC (NW2TW,SW2TW,TW,SE2TW, NE2TW) 均方根誤差,距平相關係數圖 (台灣附近5個區域)

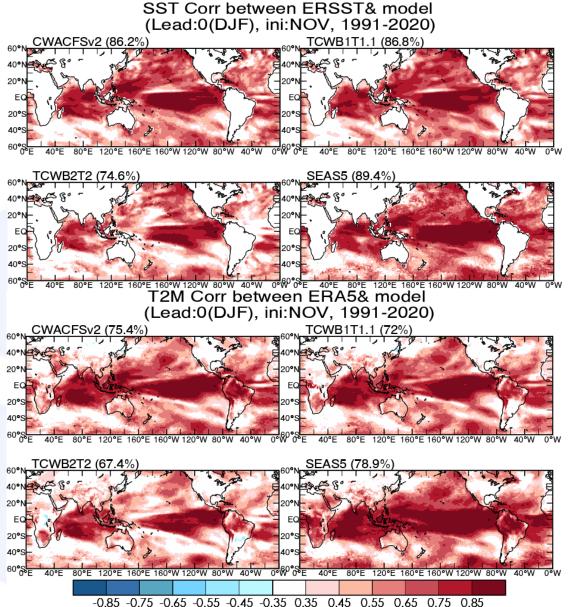
Verification Metrics (SST)

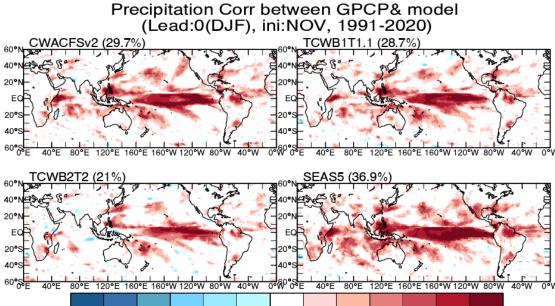
Sea Surface Temperature (SST) Evaluation			
	海表面溫度		
Major climate modes 主要氣候模態	SST 海表面溫度	EOF 經驗正交函數分析法	
ENSO spatial and temporal characteristics 聖嬰現象時空變化特徵	SST 海表面温度	Mean bias, Correlation, RMSE (of Nino indexes) 以Nino指標為對象計算平均偏差,相關 係數,均方根誤差	
Indian Ocean SST spatial and temporal characteristics 印度洋海表面溫度時空變化特徵	SST 海表面溫度	Mean bias, Correlation, RMSE (of IOD indexes) 以印度洋海溫偶極(Indian Ocean Dipole)指標為對象計算平均偏差,相關係數,均方根誤差	
South China Sea SST spatial and temporal characteristics 南海海表面溫度時空變化特徵	SST 海表面温度	Mean bias, Correlation, RMSE (of SCS, N-SCS, E-SCS, S-SCS) 南海整體與北、中、南部	


Verification Metrics (monsoon index)

East Asia and western North Pacific	Monsoons 東亞與西北太平洋	,
Winter Monsoon 冬季季風	Sea Level Pressure (SLP), U- 300hPa, U-200hPa 海平面氣壓,300hPa緯向風, 200hPa緯向風	Bias, RMSE, Correlation (Indexes: SMH, EWW, EJL, ELY) 偏差,均方根誤差,距平相關係 數圖 (季風指數)
Summer Monsoon 夏季季風	(U,V) at 850hPa and 200hPa 850hPa風場,200hPa風場	Bias, RMSE, Correlation (Indexes: WNPMI, WYI, ASMI, SAMI, DU2) 偏差,均方根誤差,距平相關係 數圖 (季風指數)
West Pacific Subtropical High (WPSH) 西北大平洋副藝帶高原	GPH at 850hPa 850hPa重力位高度	RMSE, Correlation 均方根誤差,距平相關係數圖

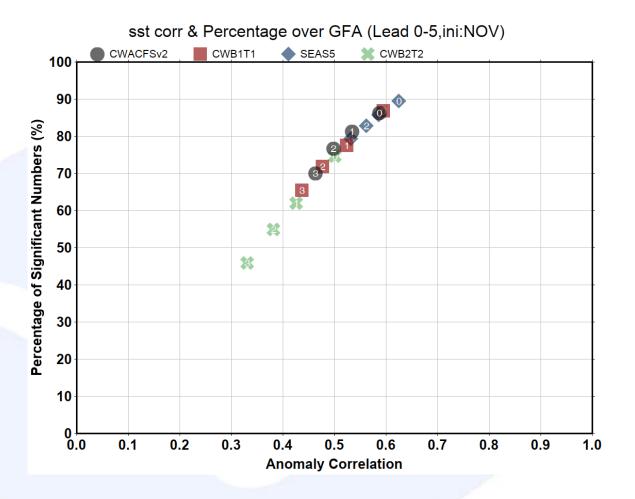

海平面溫度校驗評估

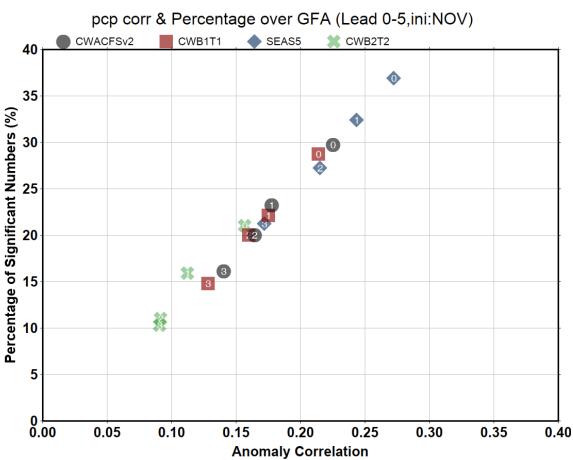




海平面溫度校驗評估

距平相關係數分析與校驗-1





-0.85 -0.75 -0.65 -0.55 -0.45 -0.35 0.35 0.45 0.55 0.65 0.75 0.85

距平相關係數分析與校驗-2

CWACFSv2●, TCWB1T1.1 ■, SEAS5 ◆, TCWB2T ★ Correlation & Percentage (Initial month: Nov, 3mn, Lead: 0-5)

夏、冬季季風指標校驗

◆ 夏季季風指標

東亞夏季季風監測指標提供五個參考指標,主要分為「溫度指標」及「降雨指標」,各表示適合用於監測臺灣降雨或氣溫變化之季風指標。 各指標簡稱代表之意義分別為:

8『溫度指標』— 適合用於監測臺灣溫度變化之季風指標 [以紅色字體標示]

→ LWY Index:南海季風&臺灣對流強度指標

→ GH Index:副熱帶高壓強度指標

§『降雨指標』— 適合用於監測臺灣降水變化之季風指標〔以藍色字體標示〕

→ CMS Index:臺灣夏季降雨監測指標 → LC Index:南海季風強度指標

§『通用指標』─ 定義夏季季風強度常使用之指標〔以黑色字體表示〕

→ WWL Index:西北太平洋夏季風指標

指標之「距平」及「標準化距平」的計算基底為1950年迄今,指標數值越高代表季風越強,個別指標詳細說明如下表所示:

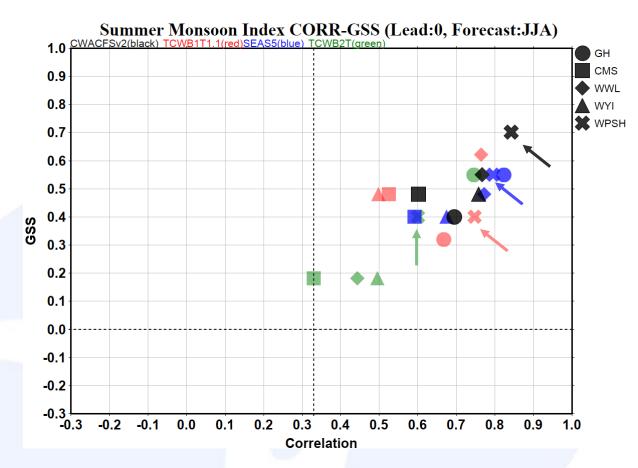
	指数名稱	說明	指數定義
温度指	LWY	根據原始定義將 <u>南海地區850hPa wind vector投影至西南風方向;</u> 並考慮 <u>臺灣地區對流發展</u> ,以此量化夏季風之強度。 ⑤此指標和臺灣測站 溫度 之相關性:季風強(LWY>0),氣溫偏低; 李風弱(LWY<0),氣溫偏高。	850hPa絕緯向風場[5'-20'N, 105'-120'E] 及OLR[22.5'-32.5'N, 112.5'-135'E] ※計算公式: [(U ₈₅₀ +V ₈₅₀)/√2]-1+(235-OLR)/10
標	CH	根據原始定義量化夏季中層大氣 副熱帶高壓 之強度。與季風強度呈反向關係。 ◎此指標和臺灣測站 溫度 之相關性:副高指標強(GH>0),氣溫偏高; 副高指標弱(GH<0),氣溫偏低。	500hPa重力位高度場 H ₅₀₀ [20°-25°N, 125°-140°E]區域平均
降雨	CMS	此指標以臺灣低層大無 緯向風水平風切 為定義,用以描述夏季臺灣低層環流之狀態。 ◎此指標和臺灣測站 隆晒 之相關性:季風強(CMS>0),降水偏多; 季風弱(CMS<0),降水偏少。	850hPa緯向風場(兩區城平均相滅) U ₈₅₀ [17.5'-22.5'N, 115'-125'E] - U ₈₅₀ [25'-30'N, 110'-120'E]
指標	I IC	根據原始定義將南海地區之經向風場量化,用以描述夏季盛行風 鹵風分量 的強度。 ⑤此指標和臺灣測站 隆晒 之相關性:季風強(LC>0),降水偏多; 季風弱(LC<0),降水偏少。	1000hPa經向風場 V ₁₀₀₀ [7.5°-20°N, 107.5°-120°E]區域平均
通用	WWL Wang et al. (2001)	根據原始定義量化 西北太平洋夏季季風 之強度。顯示東亞地區大尺度環流狀態。	850hPa緯向風場(雨區域平均相滅) U ₈₅₀ [5'-15'N, 100'-130'E] - U ₈₅₀ [20'-30'N, 110'-140'E]

◆ 冬季季風指標

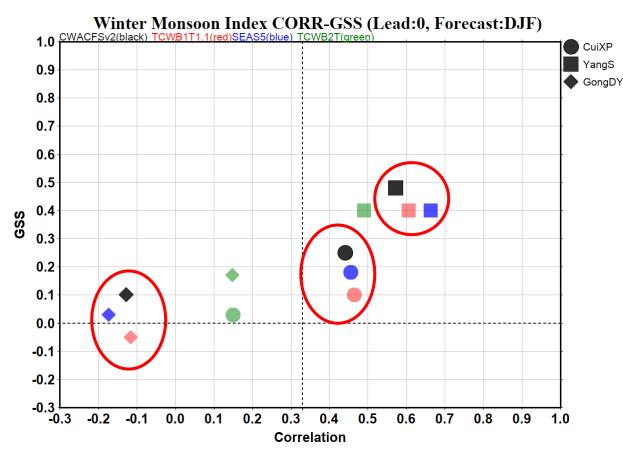
東亞冬季季風監測指標提供三種參考指標,各指標代表意義分別為:

→ CuiXP Index:東亞主槽強度 → YangS Index:東北季風強度

→ GongDY Index: 西伯利亞高壓強度


指標之「距平」及「標準化距平」的計算基底為1950年迄今,指標數值越高代表季風越強,個別指標詳細說明如下表所示:

*註:CuiXP(距平、標準化距平)及YangS(原始、距平、標準化距平)均經過變號之處理。


指數名稱	說明	指數定義
CuiXP Cui and Sun (1999)	根據原始定義量化冬季中層大氣 東亞主權 之強度。 ②此指標和臺灣測站 溫度 相關度高: 季風強(CuiXP>0),氣溫偏低; 季風弱(CuiXP<0),氣溫偏高。	500hPa重力位高度場 H ₅₀₀ [110°-130°E, 35°-40°N]區域平均
YangS Yang et al. (2002)	根據原始定義量化冬季低層大氣盛行風 北風分量 之強度。 ②此指標和臺灣測站 隆晒 之相關性: 季風強(YangS>0),降水偏少; 季風弱(YangS<0),降水偏多。	850hPa經向風場 V ₈₅₀ [100°-140°E, 20°-40°N]區域平均
GongDY Gong et al. (2001)	根據原始定義量化 <u>西伯利亞—蒙古高壓</u> 之強度。	海平面氣壓場 SLP[70"-120"E, 40"-60"N]區域平均

夏季、冬季季風指標校驗

夏季季風指標中,在WPSH(副高指標)、CMS、WYI都以CWACFSv2有最高預報技術得分,其次則是SEAS5,顯示出CWACFSv2在東亞的夏季季風有最較高的預報能力。

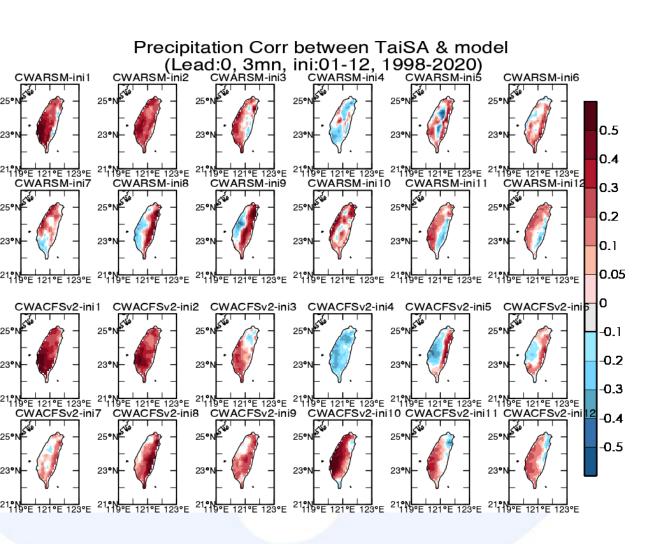
冬季季風指標中,CWACFSv2、SEAS5與TCWB1T1.1(海氣偶合模式)在冬季季風指標呈現出類似的預報技術得分。

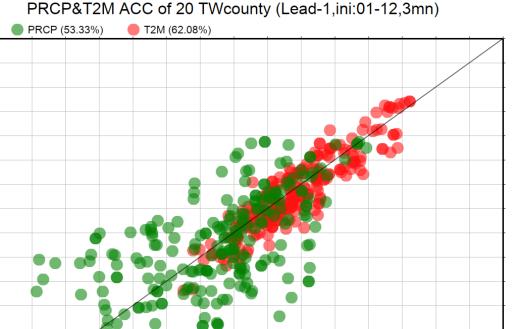
區域氣候模式(CWARSM)校驗-距平相關係數分析

0.9 0.8 0.7

0.6

0.5


0.3

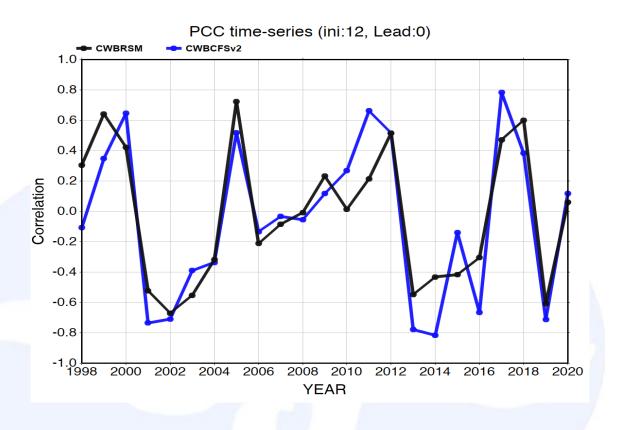

-0.1 -0.2

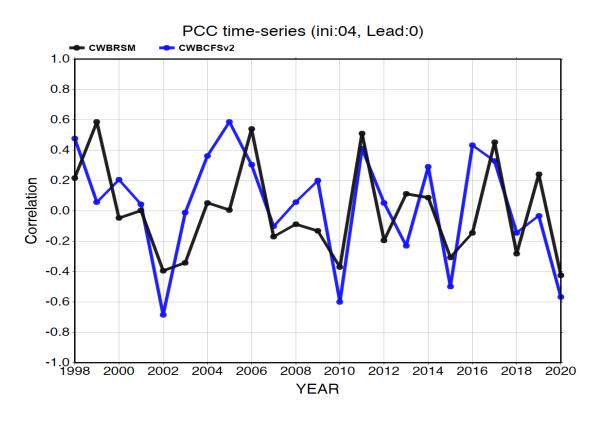
-0.3 -0.4

-0.4 -0.3 -0.2 -0.1 0.0

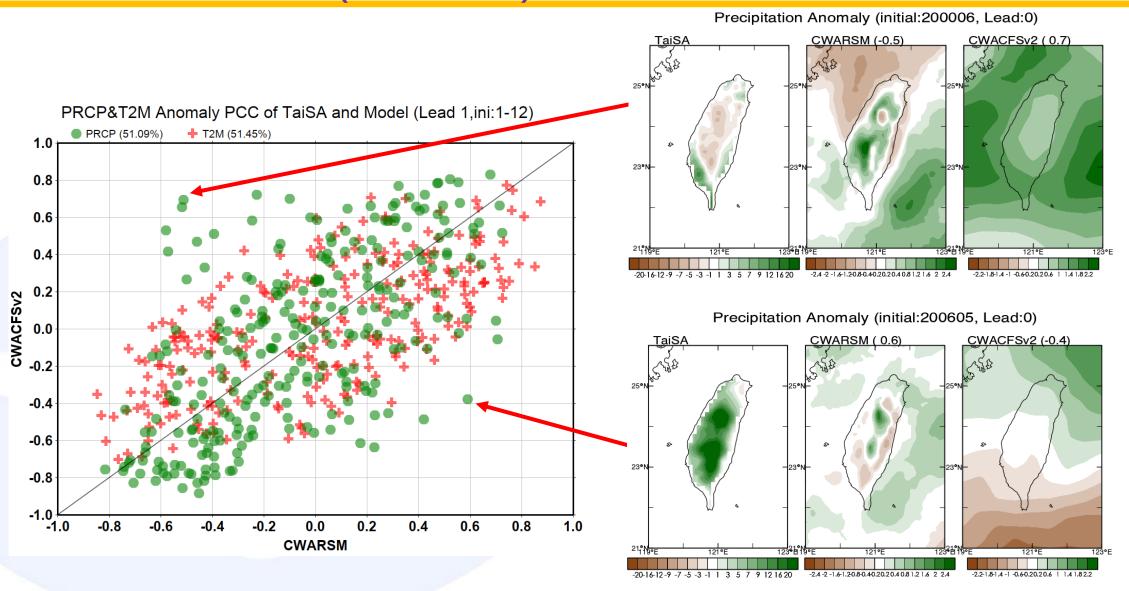
CWACFSv2

0.2 0.3

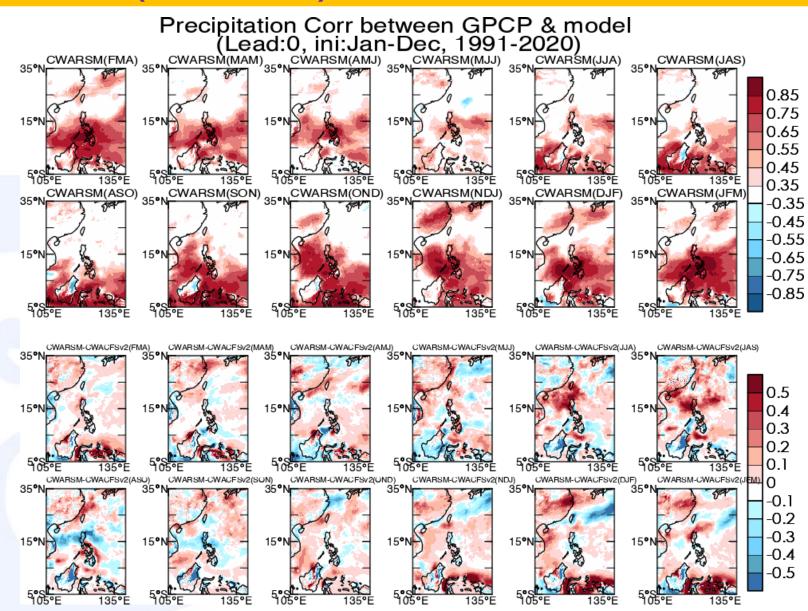

CWARSM


0.4

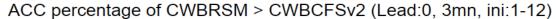
0.5 0.6 0.7 0.8 0.9 1.0

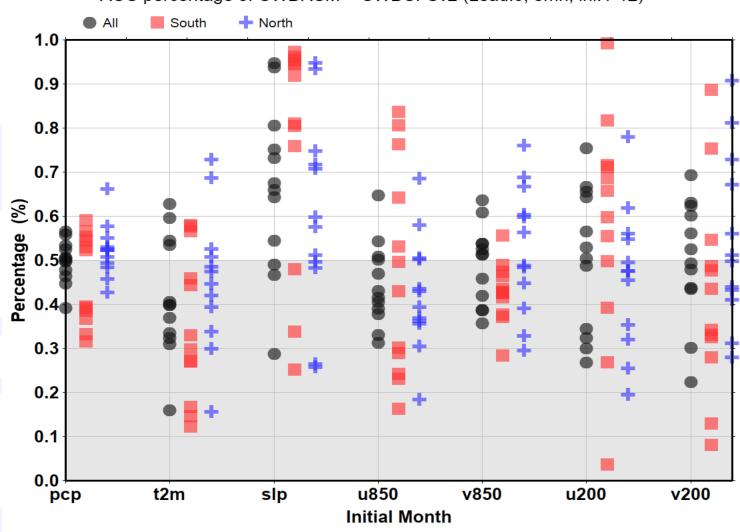


區域氣候模式(CWARSM)校驗-空間形態相關係數分析



區域氣候模式(CWARSM)校驗-空間形態相關係數分析




區域氣候模式(CWARSM)校驗-距平相關係數分析

區域氣候模式(CWARSM)校驗-距平相關係數分析

Conclusion and Future work:

- □ CWBCFSv2 預報技術得分高TCWB1T1.1約1-3%. 但SEAS5比CWBCFSv2高出3%的預報技術得分。夏季季風指標顯著CWBCFSv2在WPSH、CMS、WYI指標都有最高預報技術得分,而冬季季風指標則是三種海氣偶合模式(CWBCFSv2、TCWB1T1.1、SEAS5)表現相同,二步法氣候模式(TCWB2T)表現能力較差。
- □ 區域氣候模式(CWARSM)在環流場的預報技術得分略高於全球模式,而在臺灣區域的溫度、雨量評估中,顯示季節平均與空間形態相關係數明顯比 CWBCFSv2 有較高的預報技術得分。
- □未來將採用AI方法結合區域氣候模式預報資料來提高預報能力。

謝謝聆聽敬請指教

Thank you for your listening.