

發展GCE暖雨雙矩量微物理參數化方案: 理想與真實個案測試

2024.09.04

Yu-Jyun Liou, Kao-Shen Chung, Cheng-Rong You, Li-Hsin Chen National Central University, Taiwan

Introduction & Methodology

Introduction & Methodology N_0 : intercept μ : shape Λ : slope

A Multi-Moment Bulk Microphysics Scheme (Milbrandt and Yau 2004)

Turn GCE4ICE scheme into Warm-rain Double-momenta) keep the performance of precipitation andb) get more microphysics information of raindrop

Introduction & Methodology

Ncact : CCN Activation Prevp_rc/ Nrevp_rc : Small rain convert to cloud Nrevp: Evaporation of Rain Nccol : Self-collection of Cloud Ncevp : Evaporation of cloud Nrcol : Self-collection and Breakup of Rain

Simulation

Simulation I --- 3D Idealized Supercell

Model configuration			
WRF version	WRF4.2.1	ht (km)	000 000 000 000 000 000 000 000 000 00
Domain & Time step	200*200 & 6 s for 2h	Peig	
Horizontal Resolution	1 km	3 -	
Vertical levels & Model Top	75 levels & 25 km	1 -	$\begin{array}{c} 800 \\ 900 \\ 900 \\ -30 \\ -30 \\ -20 \\ -10 \\ 0 \\ 100 \\ -30 \\ -20 \\ -10 \\ 0 \\ 10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
Rayleigh Damping	0.003 s-1		GCESM_Potential_Temperature
Initial sounding	Case from Weisman and Klemp (1982)		175 - 305.0 150 - 304.5 - 304.0
Thermal perturbation	Maximum $\theta' = 3K$ with a horizontal radius of 10 km centered at a height of 1.5 km		(12) (10) (10) (10) (10) (10) (10) (10) (10
Microphysics scheme	GCESM(GCE4ICE)		50
			0 25 50 75 100 125 150 175 x_axis (km) 300.5

Simulation I --- 3D Idealized Supercell

Result

I. 3D Idealized Supercell

Result I --- 3D Idealized Supercell

- ✓ Similar echo range and location
- Convective cell divides into two systems in GCESM and GCEDM
- ✓ WDM7 keeps strong reflectivity intensity

Result I --- 3D Idealized Supercell

- ✓ Variety of rainfall rate in GCEDM is similar to GCESM.
- \checkmark Intensity and range of cold pool are also close.
- ✓ Dynamic performances of GCE schemes are consistent.

GCEDM maintains the features of precipitation from GCESM

GCESM

GCEDM

WDM7

Result I --- 3D Idealized supercell

60 – 120 min

- N_r : rain number concentration Dmr : mean – weighted diameter of raindrop ✓The distributions in two
- systems of GCEDM are close

to WDM7

Raindrop characteristics in GCEDM become flexible following to WDM7

Simulation

Simulation II --- Real Case

Model configuration							
WRF version	WRF4.2.1						
Start time	2020-10-21 00 UTC						
End time	2020-10-22 00 UTC						
Domain	D01	D02	D03	D04			
Horizontal resolution	27 km	9 km	3km	1km			
Time step	90 s	30s	10s	10/3s			
Vertical level	52 levels form surface to 10 hpa						
Initial and boundary condition	NCEP FNL $(1^{\circ} \times 1^{\circ})$						
Microphysics scheme	GCESM 、 GCEDM						

WPS Domain Configuration

Result

✓ GCEDM improves overestimate precipitation in GCESM

Blue : Hail ; Green : Graupel ; Red : Rain

Yilan rainfall area

- ✓ In 16 to 18 UTC :
- a) Less hail and graupel exist in

both GCE schemes

b) More cloud water, less cloud ice

> warm-rain process dominate

16-18 UTC

GCEDM not only improves overestimate, but also makes rainfall location closer to observation

Summary

◆This study tries to turn GCE4ICE single-moment scheme into warm-rain double-moment scheme following Lim and Hong (2010):

- ✓ With 3D idealized supercell, we confirm
 - **CEDM keeps the characteristics of precipitation in GCESM.**
 - > The features of rain droplet in GCEDM become various successfully.
- ✓ In 20201021 real case study

➢ GCEDM shows much better forecast ability, especially when warmrain situation.

Thank you for listening