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Abstract

The cost and the accuracy of numerical weather prediction (NWP) models for the long-term or
so-called seasonal predictions are big issues. Computational fluid dynamics (CFD) numerical schemes
are limited by appropriate time-integration steps for avoiding the instability in computing these NWP
models. The time-integration steps are typically on the scale of seconds to hours, and the long-term
prediction timescales are excess 30 days or several months. Other issues include the uncertainty of the
proper initial condition, unresolved physical processes, the incomplete governing equation calculation,
and numerical scheme errors increasingly over time. Traditionally, the operational weather centers will
consider the ensemble members forecasts or modify the data assimilation cycle to response the
unknown future. The simple way is to take the mean of NWP model predictions. Especially, when
considering seasonal forecasts, for removing NWP model bias, the pentad, the 10-day, or monthly
mean of predictions are usually used to obtain the final predictions. However, the cost of long-term
NWP model integrations with average calculations is very high, and more than this, forecasts are still
not good enough. One of the solutions to solve this dilemma is data-driven models, which do not have
the limitation of using the short time-integration steps for the long-term seasonal forecasts. Moreover,
data-driven models can combine different domain knowledge easily in learning algorithms for solving
CFD problems. In term of computing efficiency, CFD problems can be solved in low-dimensional
space instead of numerical schemes in an original high-dimensional space. The reasonable
low-dimensional structures still can reflect the high-dimensional features, but the computation
complexity in low-dimensional variables is simpler than the complexity in high-dimensional space. We
proposed to combine the dimensionality reduction method, isometric feature mapping (ISOMAP), and
numerical networks (NN) for Pacific sea surface temperature (SST) and East Asian precipitation
predictions. The low-dimensional structures of SST and precipitation are shown by ISOMAP leading
principal components (PCs). The evolution of leading PCs can be learned by NN algorithms, then the
NNs predict these leading PC values. The predicted PCs with climatological residual PCs times
climatological empirical orthogonal functions (EOFs) can be reconstructed SST or precipitation, which
is the final prediction. Because the low-dimensional PC data points are less than the original physical

data points, the NN calculation is faster than the traditional NWP models.
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1. Introduction

The goal of the classification or the
clustering is to understand the differences among
the events, e.g., the numerical data, the colors,
the object shapes or figures, and etc. Now the
question is: how to describe the difference, or
how to measure the difference, and how to
difference

recognize the effectively.

Traditionally, the analyzed data will be
dimensional reduction to low dimension 2D or
3D points and the difference can be measured by
the distance in the low dimensional space. Next,
the key point is how to get the meaningful low
dimensional space.

One of the traditional dimensionality
reductions is the principal component analysis
(PCA). The leading PCA components extract the
main variances of the original data. The
variances extracted by the leading PCA
components are called explained variances. The
fewer leading PCA components and the more
explained variances, the better results we can get
from the PCA. For example, if the original data
dimensions are 10,000 and then we can just use
three leading PCA components to explain the
80% original variances, the PCA results are very
good. On the contrary, the worse situation is that
the excess 100 leading PCA components to
explain just 50% the original variance.
Inevitably, this situation always happens in the
real data analysis. So, there are many
modifications of the PCA analysis (Alpaydin,
2010; Hsieh, 2009; Bishop, 2006). Once one
gets the pretty good low dimensional PCA
components, he/she cannot guarantee to get the
well  classification  results.  There low
dimensional points from PCA can be classified

well or not depend on the spread of the points

enough or not.

In order to solve the classification problem,
or for getting the well spread of the low
dimensional points, Tenebaum et al. (2000)
propose the isometric mapping (ISOMAP) to get
the well spread of the low dimensional data
points. They point to the traditional PCA taking
the data linearly; for example, the time evolution
is resolved by the linear evolution of the original
data arrangement. We can image that the
geopotential height evolves in one month by
daily data. The 30 times data we taking is
constrained by the linear time variation. We
know the geopotential height will not evolve
linearly in one month. But when we use the PCA,
the covariance matrix of geopotential height is
counted by linear consideration. When we use
the linear coordinates to check the nonlinear
variation, we will find the data points will
concentrate in some places and separate in some
places. The concentrating data points are not
easy to classify and cause the classification fail.
The ISOMAP tries to build the original
nonlinear relations in the data by establishing the
nearest neighbors. The ISOMAP keeps the small
domains (manifold) linearity but reflect the
larger domain nonlinear variations.

In this report, we use the sea surface
temperature (SST) data to do the traditional
ENSO classification. The comparisons of
classification results by traditional PCA and the

ISOMAP are shown.

2. Data and Methods

The SST data we used are the version 5 of
NOAA NCDC ERSST (Extended Reconstructed
global Sea Surface Temperature data based on

COADS data). The time is from Jan. 1980 to



Apr. 2021. The ENSO, the normal, and the La
Nifia events are based on NOAA’s climate
prediction center Nifio 3.4 index. The moving
three months average SST excess 0.5 was
determined to be the ENSO events. The ENSO
events will be marked by red color, the normal
events will be marked by yellow color, and the
La Nifia events will be marked by blue color.
The different color represents the different label
which will be used in the later classification.

The concept of ISOMAP is shown in Fig. 1.
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Fig. 1: The concept of the ISOMAP.

The real data points are located in the warp
surface, which are shown in the arc curve in the
Fig.1. When we take the PCA calculation, we
assume the variation is linear, the relation
between data points is like the short straight line.
The PCA relation can be regarded as one kind of
Euclidean distance. But the real distance
between the point a and the point c is larger than
the Euclidean distance. The PCA always fails to
show the real situation. If we need to use the
linear tool like linear algebra eigen solutions, we
need to rearrange the relation, the distance, to

the longer straight line in Fig. 1. The distance

between the point a and the point b on the

geodesic line truly reflects the distance in the
warp surface, the curve, in the Fig. 1.

Tenebaum et al. (2000) propose to build the
nearest neighbor graph, which is used to reflect
the distance on the warp surface. That means we
does not count the distance between the point a
and c directly. The distance between the point a
and the point ¢ must pass by the other three
points. There is no ‘shortcut’ between the point a
and the point c. The geodesic distance is
calculated on this neighbor graph and then we
use this distance relation and follow the
traditional PCA procedure to solve the eigen
problem.

The classifier we used in this report is
SSVM, one kind of the support vector machines
(Lee and Mangasarian, 2000). All the testing

results are from 20 times 5-fold cross validation.

3. Classification
We chose the leading three

components from the PCA and the ISOMAP to

eigen

show the dimensionality reduction, and we will
use the leading 20 eigen components to test the
classification results. The PCA three leading
eigen components were shown in Fig. 2. The Fig.
2a showed the 3D structure, and the Fig. 2b
showed the 2D structure. In Fig. 2 we can say
that most ENSO, normal, and La Nifia events
were already separated well. That means
Meteorologists using the Nifio 3.4 index to
define the ENSO event is pretty correct.
Inevitably, there were some points stick together
which will probably cause the classifier failure.
In next stage, we want to know if we can push
these points away more. Somehow, like we

discuss in the section 2, the ISOMAP can reflect

the real (geodesic) distance between the points.



In Fig. 3, the ISOMAP leading three

components were shown. We found the
ISOMAP points were indeed more separated
than the points of the PCA. We noticed there
were some events significantly different form
others. They were the ENSO 82/83, 97/98, 15/16,
and the La Nifia 84/85, 88/89, 98/99. The 3D
structure of ISOMAP had more variations in

contrast to the PCA structure.

Fig. 2:
composed by the leading three PCA
components. (b) the 2D structure

(a) The 3D structure

composed by the leading two PCA
components.

The explained variances of the PCA and the

ISOMAP were similar. The first leading
eigenvalue was occupied about 30% of the total
sum of the eigenvalues. In here, we also check
the residual variances, which is define as

1— R*(Dy,Dy)
where R is Pearson correlation number, Dy, can
be the covariance matrix of the PCA or

ISOMAP, and the Dy can be the covariance

matrix that comprises the low dimensional

principal components.

structure

Fig. 3:
composed by the leading three
ISOMAP components. (b) the 2D
structure composed by the leading
two ISOMAP components.

(a) The 3D

The residual variances reflected the
similarity of the original covariance and the low
dimensional covariance. The relation or the
spatial/temporal structure between any two data
points were kept in the ISOMAP calculation.

The residual variances were shown in Fig. 4.

PCA and ISOMAP K= 44 for 38T in the Pacific Ocean
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Fig. 4: The residual variances. The
red curve is from the PCA and the
blue curve is from ISOMAP.



When we checked the Fig. 4, we found the
traditional PCA cannot reflect the original
covariance well. In the leading 20 eigen
components, there were at least 60% variance
left. In contrast to the PCA, the leading three
ISOMAP components almost extract 90%
variance from the original covariance.

About the classification results from the
leading 20 eigen components are similar in the
PCA and the ISOMAP. The testing accuracy

will be around 91% in both methods.

4. Conclusion and Discussion

The ISOMAP can help to identify the
extreme ENSO cases and easily measure the
differences between any two events. The
residual variance of the ISOMAP is obvious
lesser than the PCA. That implies we could
rebuild the covariance matrix in low
dimensionality. The ISOMAP results are easily
to do the clustering. We all know there are no
two identical ENSO events. But how different of
them or what the quantity difference that it
depends on the effective tool like the ISOMAP
to measure. The clustering results can help us to
check the ENSO cases. Besides the ENSO
problem, the ISOMAP method also can use to do
the composite analysis when we want to pick up
similar cases in any Meteorological problems.
The ISOMAP can be used to be diagnostic tool
for checking different atmospheric circulations.
We hope the ISOMAP can be one of the score

measurements for checking the NWP outputs

and the observation.

5. References

Alpaydin, E., 2014: Introduction to Machine
Learning. MIT press, 640pp.

Bishop, C. M., 2006: Pattern recognition and
machine learning. Springer-Verlag Press,
738pp.

Hsieh, W. W., 2009: Machine learning methods
in the environmental sciences: Neural
networks and kernels. Cambridge Univ.
press, 349pp.

Ilin, A., H. Valpola, and E. Oja, 2006:
Exploratory analysis of climate data using
source  separation methods.  Neural
Netowrk, 19, 155-167.

Kelleher, J. D. and B. Tierney, 2018: Data

science. MIT press, 264pp.

Lee, Y.-J. and O. L. Mangasarian, 2000: SSVM:
a smooth support vector machine for
classification. Comput. Optim. Appl., 20(1),
5-22.

Russell, S. and P. Norvig, 2010: Artificial
intelligence: A modern approach. Pearson
press, 1132pp.

Tenebaum, J. B., V. d. Silva, and J. C. Langford.
A global geometric framework for
nonlinear dimensionality reduction. Science,
290, pages 2319-2323, 200.



