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Abstract 
 

The cost and the accuracy of numerical weather prediction (NWP) models for the long-term or 

so-called seasonal predictions are big issues. Computational fluid dynamics (CFD) numerical schemes 

are limited by appropriate time-integration steps for avoiding the instability in computing these NWP 

models.  The time-integration steps are typically on the scale of seconds to hours, and the long-term 

prediction timescales are excess 30 days or several months. Other issues include the uncertainty of the 

proper initial condition, unresolved physical processes, the incomplete governing equation calculation, 

and numerical scheme errors increasingly over time. Traditionally, the operational weather centers will 

consider the ensemble members forecasts or modify the data assimilation cycle to response the 

unknown future. The simple way is to take the mean of NWP model predictions. Especially, when 

considering seasonal forecasts, for removing NWP model bias, the pentad, the 10-day, or monthly 

mean of predictions are usually used to obtain the final predictions. However, the cost of long-term 

NWP model integrations with average calculations is very high, and more than this, forecasts are still 

not good enough. One of the solutions to solve this dilemma is data-driven models, which do not have 

the limitation of using the short time-integration steps for the long-term seasonal forecasts. Moreover, 

data-driven models can combine different domain knowledge easily in learning algorithms for solving 

CFD problems. In term of computing efficiency, CFD problems can be solved in low-dimensional 

space instead of numerical schemes in an original high-dimensional space. The reasonable 

low-dimensional structures still can reflect the high-dimensional features, but the computation 

complexity in low-dimensional variables is simpler than the complexity in high-dimensional space. We 

proposed to combine the dimensionality reduction method, isometric feature mapping (ISOMAP), and 

numerical networks (NN) for Pacific sea surface temperature (SST) and East Asian precipitation 

predictions. The low-dimensional structures of SST and precipitation are shown by ISOMAP leading 

principal components (PCs). The evolution of leading PCs can be learned by NN algorithms, then the 

NNs predict these leading PC values. The predicted PCs with climatological residual PCs times 

climatological empirical orthogonal functions (EOFs) can be reconstructed SST or precipitation, which 

is the final prediction. Because the low-dimensional PC data points are less than the original physical 

data points, the NN calculation is faster than the traditional NWP models. 
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摘    要 

長期或所謂季節性預測的數值天氣預報（NWP）模型的成本和準確性是一個大問題。 計算

流體動力學 (CFD) 數值方案受到適當的時間積分步驟的限制，以避免計算這些 NWP 模型時的

不穩定性。 時間積分步驟通常為秒到小時，長期預測時間尺度超過 30 天或幾個月。 其他問題

包括適當初始條件的不確定性、未解決的物理過程、不完整的控制方程計算以及隨著時間的推移

逐漸增加的數值方案誤差。 傳統上，業務氣象中心會考慮集合成員的預測或修改數據同化週期

以應對未知的未來。 簡單的方法是取 NWP 模型預測的平均值。 特別是，在考慮季節性預測

時，為了消除 NWP 模型偏差，通常使用預測的五重、10 天或月平均值來獲得最終預測。 然

而，長期 NWP 模型與平均計算相結合的成本非常高，除此之外，預測仍然不夠好。 解決這一

困境的解決方案之一是數據驅動模型，它不存在使用短時間積分步驟進行長期季節性預測的限制。 

此外，數據驅動模型可以在解決 CFD 問題的學習算法中輕鬆結合不同的領域知識。 在計算效率

方面，CFD 問題可以在低維空間中求解，而不是在原始高維空間中求解數值格式。 合理的低維

結構仍然可以反映高維特徵，但低維變量的計算複雜度比高維空間的複雜度簡單。 我們建議結

合降維方法、等距特徵映射（ISOMAP）和數值網絡（NN）來預測太平洋海面溫度（SST）和東

亞降水。 海溫和降水的低維結構由 ISOMAP 主成分 (PC) 顯示。 領先 PC 的演變可以通過神

經網絡算法來學習，然後神經網絡預測這些領先的 PC 值。 預測的 PC 與氣候殘差 PC 乘以氣

候經驗正交函數（EOF）可以重建海表溫度或降水量，這就是最終的預測。 由於低維 PC 數據

點少於原始物理數據點，因此 NN 計算比傳統 NWP 模型更快。



1. Introduction 
The goal of the classification or the 

clustering is to understand the differences among 

the events, e.g., the numerical data, the colors, 

the object shapes or figures, and etc. Now the 

question is: how to describe the difference, or 

how to measure the difference, and how to 

recognize the difference effectively. 

Traditionally, the analyzed data will be 

dimensional reduction to low dimension 2D or 

3D points and the difference can be measured by 

the distance in the low dimensional space. Next, 

the key point is how to get the meaningful low 

dimensional space.  

One of the traditional dimensionality 

reductions is the principal component analysis 

(PCA). The leading PCA components extract the 

main variances of the original data. The 

variances extracted by the leading PCA 

components are called explained variances. The 

fewer leading PCA components and the more 

explained variances, the better results we can get 

from the PCA. For example, if the original data 

dimensions are 10,000 and then we can just use 

three leading PCA components to explain the 

80% original variances, the PCA results are very 

good. On the contrary, the worse situation is that 

the excess 100 leading PCA components to 

explain just 50% the original variance. 

Inevitably, this situation always happens in the 

real data analysis. So, there are many 

modifications of the PCA analysis (Alpaydin, 

2010; Hsieh, 2009; Bishop, 2006). Once one 

gets the pretty good low dimensional PCA 

components, he/she cannot guarantee to get the 

well classification results. There low 

dimensional points from PCA can be classified 

well or not depend on the spread of the points 

enough or not. 

In order to solve the classification problem, 

or for getting the well spread of the low 

dimensional points, Tenebaum et al. (2000) 

propose the isometric mapping (ISOMAP) to get 

the well spread of the low dimensional data 

points. They point to the traditional PCA taking 

the data linearly; for example, the time evolution 

is resolved by the linear evolution of the original 

data arrangement. We can image that the 

geopotential height evolves in one month by 

daily data. The 30 times data we taking is 

constrained by the linear time variation. We 

know the geopotential height will not evolve 

linearly in one month. But when we use the PCA, 

the covariance matrix of geopotential height is 

counted by linear consideration. When we use 

the linear coordinates to check the nonlinear 

variation, we will find the data points will 

concentrate in some places and separate in some 

places. The concentrating data points are not 

easy to classify and cause the classification fail. 

The ISOMAP tries to build the original 

nonlinear relations in the data by establishing the 

nearest neighbors. The ISOMAP keeps the small 

domains (manifold) linearity but reflect the 

larger domain nonlinear variations. 

In this report, we use the sea surface 

temperature (SST) data to do the traditional 

ENSO classification. The comparisons of 

classification results by traditional PCA and the 

ISOMAP are shown.  

 

2. Data and Methods 

The SST data we used are the version 5 of 

NOAA NCDC ERSST (Extended Reconstructed 

global Sea Surface Temperature data based on 

COADS data). The time is from Jan. 1980 to 



Apr. 2021. The ENSO, the normal, and the La 

Niña events are based on NOAA’s climate 

prediction center Niño 3.4 index. The moving 

three months average SST excess 0.5 was 

determined to be the ENSO events. The ENSO 

events will be marked by red color, the normal 

events will be marked by yellow color, and the 

La Niña events will be marked by blue color. 

The different color represents the different label 

which will be used in the later classification. 

The concept of ISOMAP is shown in Fig. 1.     

 

 

Fig. 1: The concept of the ISOMAP. 

 

The real data points are located in the warp 

surface, which are shown in the arc curve in the 

Fig.1. When we take the PCA calculation, we 

assume the variation is linear, the relation 

between data points is like the short straight line. 

The PCA relation can be regarded as one kind of 

Euclidean distance. But the real distance 

between the point a and the point c is larger than 

the Euclidean distance. The PCA always fails to 

show the real situation. If we need to use the 

linear tool like linear algebra eigen solutions, we 

need to rearrange the relation, the distance, to 

the longer straight line in Fig. 1. The distance 

between the point a and the point b on the 

geodesic line truly reflects the distance in the 

warp surface, the curve, in the Fig. 1.  

    Tenebaum et al. (2000) propose to build the 

nearest neighbor graph, which is used to reflect 

the distance on the warp surface. That means we 

does not count the distance between the point a 

and c directly. The distance between the point a 

and the point c must pass by the other three 

points. There is no ‘shortcut’ between the point a 

and the point c. The geodesic distance is 

calculated on this neighbor graph and then we 

use this distance relation and follow the 

traditional PCA procedure to solve the eigen 

problem.  

    The classifier we used in this report is 

SSVM, one kind of the support vector machines 

(Lee and Mangasarian, 2000). All the testing 

results are from 20 times 5-fold cross validation.  

 
3. Classification 

We chose the leading three eigen 

components from the PCA and the ISOMAP to 

show the dimensionality reduction, and we will 

use the leading 20 eigen components to test the 

classification results. The PCA three leading 

eigen components were shown in Fig. 2. The Fig. 

2a showed the 3D structure, and the Fig. 2b 

showed the 2D structure. In Fig. 2 we can say 

that most ENSO, normal, and La Niña events 

were already separated well. That means 

Meteorologists using the Niño 3.4 index to 

define the ENSO event is pretty correct. 

Inevitably, there were some points stick together 

which will probably cause the classifier failure. 

In next stage, we want to know if we can push 

these points away more. Somehow, like we 

discuss in the section 2, the ISOMAP can reflect 

the real (geodesic) distance between the points.  



In Fig. 3, the ISOMAP leading three 

components were shown. We found the 

ISOMAP points were indeed more separated 

than the points of the PCA. We noticed there 

were some events significantly different form 

others. They were the ENSO 82/83, 97/98, 15/16, 

and the La Niña 84/85, 88/89, 98/99. The 3D 

structure of ISOMAP had more variations in 

contrast to the PCA structure. 

 

Fig. 2: (a) The 3D structure 
composed by the leading three PCA 
components. (b) the 2D structure 
composed by the leading two PCA 
components. 

 

The explained variances of the PCA and the 

ISOMAP were similar. The first leading 

eigenvalue was occupied about 30% of the total 

sum of the eigenvalues. In here, we also check 

the residual variances, which is define as 

                       

where R is Pearson correlation number, DM can 

be the covariance matrix of the PCA or 

ISOMAP, and the DY can be the covariance 

matrix that comprises the low dimensional 

principal components. 

 
Fig. 3: (a) The 3D structure 
composed by the leading three 
ISOMAP components. (b) the 2D 
structure composed by the leading 
two ISOMAP components. 

 

The residual variances reflected the 

similarity of the original covariance and the low 

dimensional covariance. The relation or the 

spatial/temporal structure between any two data 

points were kept in the ISOMAP calculation. 

The residual variances were shown in Fig. 4.   

 

Fig. 4: The residual variances. The 
red curve is from the PCA and the 
blue curve is from ISOMAP.  
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When we checked the Fig. 4, we found the 

traditional PCA cannot reflect the original 

covariance well. In the leading 20 eigen 

components, there were at least 60% variance 

left. In contrast to the PCA, the leading three 

ISOMAP components almost extract 90% 

variance from the original covariance.  

About the classification results from the 

leading 20 eigen components are similar in the 

PCA and the ISOMAP. The testing accuracy 

will be around 91% in both methods.  

 

4. Conclusion and Discussion 

The ISOMAP can help to identify the 

extreme ENSO cases and easily measure the 

differences between any two events. The 

residual variance of the ISOMAP is obvious 

lesser than the PCA. That implies we could 

rebuild the covariance matrix in low 

dimensionality. The ISOMAP results are easily 

to do the clustering. We all know there are no 

two identical ENSO events. But how different of 

them or what the quantity difference that it 

depends on the effective tool like the ISOMAP 

to measure. The clustering results can help us to 

check the ENSO cases. Besides the ENSO 

problem, the ISOMAP method also can use to do 

the composite analysis when we want to pick up 

similar cases in any Meteorological problems. 

The ISOMAP can be used to be diagnostic tool 

for checking different atmospheric circulations. 

We hope the ISOMAP can be one of the score 

measurements for checking the NWP outputs 

and the observation. 
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