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Abstract 

Weather forecast is vital to aviation safety. Inaccurate forecast not only causes problems to pilots and 

air traffic controllers, but also leads to aviation accidents and incidents. To enhance the forecast accuracy, 

a deep learning recurrent neural network by long short-term memory is proposed in this work. A dataset 

of 10 weather features of the whole year of 2020 in Taiwan was employed in the deep learning network, 

90% of the data for training and 10% for testing. The data are first standardized in preprocessing and then 

trained by the long short-term memory network. The results show that the feature of sea pressure, dew 

point, relative humidity visible mean and cloud amount are most influential for predicting temperature, 

compared with the features of wind speed, wind direction, sunshine rate and global solar radiation. 

Deleting the less influential features can achieve the lowest root mean square error (RMSE) to 2.3872, 

while expediting the forecast calculation. The deep learning network is shown effective to forecast the 

aviation weather with the mean absolute percentage error (MAPE) 10.8682%. 
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1. Introduction 
Accurate weather forecast is known important to 

aviation safety and its chaotic nature has posed many 

challenges to scientists around the world. Bad weather is 

the primary feature known to influence on aircraft 

operation, increase operating cost, and causes accidents. 

In aviation safety, detail observation of atmosphere states 

(features), such as temperature, pressure, relative humidity, 

wind speed and direction, cloud height and density and 

rainfall have been adopted in weather forecast. For 

example, at a certain pressure with high temperature, an 

aircraft needs higher take off speed and requires longer 

runway. 

Numerical weather prediction (NWP) by using 

mathematic models was first attempted over a century ago 

[1]. It was not until 1950, NWP was seen in actual 

applications [2]. Output statistics (MOS) has been most 

widely used to improve forecast ability [3], but it is being 

phased out by recent development on artificial neural 

network (ANN). Schizas et al. [4] applied the 

backpropagation algorithm in ANN to temperature 

forecast. Maqsood et al. [5] presented an ensemble of 

ANN with learning paradigms for weather forecasting. 

However, ANN still have two serious problems, one is to 

capture sequential information from the input and the 

other is the vanishing and exploding gradient problem 

leading to poor convergence. 

Recurrent Neural Network (RNN) by using a looping 

constraint on the hidden layer of ANN was proposed to 

solve the difficulties when processing sequential data. 

Hopfield [6] also developed a single-layer feedback neural 

network to solve the optimization problems. Based on his 

work, an RNN with recurrent connection on the hidden 

state by using backpropagation algorithm was proposed 

for deep learning [7]. Vlachas et al. showed that RNN 

trained via Backpropagation through time (BPTT) has 

superior forecasting abilities and capture well the 

dynamics of reduced order systems [8]. RNN has the 

advantage of sharing the parameters across different time 

steps for effective processing in sequential, or time series, 

data. There are some weather modelling applications of 

time series on aviation meteorology or geoscience. Using 

Bayesian statics method to learn long time series data 

from observations of high-dimensional chaotic dynamics 

such as geophysical flows [9]. Illustrate the equivalences 

between four-dimensional variational data assimilation 

and an RNN, addressing the grand challenge of making 

better use of observations to improve physical models of 

earth system processes [10], and been used successfully 

for emulating, downscaling, and forecasting weather and 

climate processes [11]. To gain further process 

understanding of Earth system science problems, 
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improving the predictive ability of seasonal forecasting 

and modelling of long-range spatial connections across 

multiple timescales [12]. However, when applied to 

geosciences, an additional difficulty arises by the 

continually increasing sophistication of the environmental 

models, so far have not delved into its conceptual and 

methodological complexities [13]. 

This work aims to apply a long short-term memory 

network (LSTM) to model a time series data and to reach 

high accuracy prediction in weather forecast. For aviation 

safety, if various weather phenomena can be accurately 

classified and processed successfully, accurate prediction 

is achievable for pilot decision making. 

 

2. Long Short-Term Memory Network 
An artificial neural network (ANN) is constructed by 

assuming the input do not have any order and the output 

depend only on the input. In practice, the output is often 

dependent upon the previous input and RNN becomes 

needed. RNN has been known suffering from the problem 

of vanishing and exploding gradient, where error is 

accumulated during update (iteration), leading to very 

large gradients and eventually divergence, i.e., unable to 

learn from the training data such that a network fails to 

learn from the input sequential data. A LSTM in RNN is 

therefore proposed to solve the gradients problems in 

sequence prediction [14]. Salman et al. [15] proposed a 

forecasting model extended from LSTM predict weather 

data in Indonesia airport. Hong et al. [16] adapted an 

LSTM to very short-term weather forecasting. With the 

development of deep learning, LSTMs are now well-

suited to classifying, processing and predicting the long-

term time series data. Sangiorgio et al. [17] show that 

LSTM architectures maintain good performances when 

the number of time lags included in the input differs from 

the actual embedding dimension of the dataset. Vlachas et 

al. [18] proposed a hybrid architecture to extend the 

forecasting capabilities of LSTM networks. The 
handwriting recognition for classifying [19]. The ozone 

data for processing [20], and the weather data for 

predicting [21] all demonstrated the LSTM effectiveness. 

An RNN receives information from prior input that 

may influence the current input and output. The structure 

of RNN is shown in Figure 1, where the output of previous 

state ht-1  is dependent on the input sequence xt-1  with 

hyperbolic tangent (tanh) as activation function for 

modelling non-linearity. In theory, a RNN shall have the 

ability to handle arbitrary long-term dependencies, while 

in practice, it still suffers from the problem of vanishing 

and exploding gradients. LSTM is explicitly designed to 

avoid the gradient problem and the long-term dependency 

of the data nature. An LSTM has feedback connections 

composed of three gates as shown in Figure 2, updating 

and controlling the cell states, which models longer 

memory that stores and loads information of past events. 

Because of the feedback connection, an LSTM can 

process not only single data, but also deal with sequences 

data. The three gates are the forget gate f
t
, input gate it 

and output gate ot with tanh and sigmoid (σ) activation 

functions. When processing an LSTM, the first part is 

called forget gate, a sigmoid function, deciding if the 

information of the output ht-1 of the above unit and the 

input xt  of this unit should be kept or not from the 

previous time step. The equation of forget gate can be 

shown as 

f
t
 = σ(wf . [ht-1, xt]+bf) (1) 

The input gate generates a value between [0,1] for each 

item in C̃t , controlling how much new information is 

added, 0 means completely discarded, 1 means completely 

pass. The equation of input gate can be shown as 

it = σ(wi×[ht-1, xt]+bi) (2) 

C̃t = tanh(wc×[ht-1, xt]+bc) (3) 

Ct = f
t
×Ct-1 + it×C̃t  (4) 

After combining the input gate and the cell state, the 

output gate for prediction is to pass the previous hidden 

state and the current input into a sigmoid function, then 

pass the newly modified cell state to the tanh function, 

which controls the information encoded in the cell state to 

be the input to the next hidden state. The equation of 

output gate can be shown as 

ot = σ(wo×[ht-1, xt]+bo)  (5) 

ht = ot×tanh(Ct) (6) 

The wf, wc, wi, wo represent the weighting matrix of the 

hidden state and input, bf, bc, bi, bo  represent the offset 

value, h  is the hidden state, representing short term 

memory and C  is the cell state, representing long term 

memory.  

LSTM controls discarding or adding information 

through ‘doors’ to achieve forgetting or memory functions. 

The forget gate is to decide if the information of the output 

of the above unit and the input of present unit should be 

kept or not from the previous time step. The input gate 

quantifying the importance of the new information in the 

input and C̃t controls the information to be encoded into 

the cell state. The output gate is used to control how much 

of the current cell state is filtered out. The three gates 

allowed gate layers to have knowledge about the cell state 

at every instant, which addresses the vanishing gradient 

problem that makes network training difficult for a long 

sequence of words or integer. Therefore, LSTM is often 

used for training long time series data such as weather 

forecast because of its powerful learning capabilities [22]. 

 

3. Input Data Preprocessing 
Raw data often come in large set. It is thus necessary 

to preprocess the data before deep learning. It is also 

essential to transform the data upon data missing, data 

unsorted, data scaling, non-stationarity and 

multicollinearity. In this study, data preprocessing is 

needed to improve training convergence and reduce 

training time. The feature in this study, including sea 

pressure (hPa), temperature (ºC), dew point (ºC), relative 

humidity (%), wind speed (m/s), wind direction (360 

degree), sunshine rate (%), global solar radiation (MJ/m2), 

visible mean (km) and cloud amount (0~10), vary so 

vastly in terms of magnitude. Data preprocessing in z-

score normalization is adopted by  

X' = (X - μ)/β  (7) 
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where 𝑋  is the original data point, X'  is the new data 

point after preprocessing, μ  is the mean value of the 

feature and β is the standard deviation. In aviation, the 

features are often widely differentiating, for example, the 

sea pressure is around 1013.25 hPa, but the temperature is 

in the range of around 9° to 32° in Taiwan. Therefore, it is 

necessary to scale the data of processing for aviation 

weather prediction. While training a LSTM model in deep 

learning, it is often useful to monitor the deep learning 

training progress. 

In this paper, a daily weather data for the whole year 

of 2020 in Taiwan has been collected from Central 

Weather Bureau Taiwan. The data contains 10 weather 

information listed above. Sea pressure was included 

because of its association with boundary layer inversions, 

radiative cooling at the surface, clear skies, and the 

presence of anticyclones. An increase in sea pressure, or 

persistent high values would provide an indication of a 

synoptic situation conducive to fog formation. Dew point 

temperature, the occurrence of fog can be identified by the 

point at which dry-bulb and dew point temperatures 

converge. Trends in the relative difference between these 

two parameters are an indicator of the likelihood of fog 

formation. These predictors were employed by themselves 

as well as being combined to calculate relative humidity 

(an input which was eventually excluded from the final 

choice of parameters). Relative humidity, while humidity 

itself is a climate variable, it also affects other climate 

features. Environmental humidity is affected by winds and 

by rainfall. Visibility mean, visibility measurements 

provide short-term nowcasting guidance as the ambient air 

temperature approaches its dew point and mist begins to 

form. Total cloud amount, a prerequisite for fog formation 

is a negative net radiation balance, as inferred by the 

occurrence of clear nocturnal skies. Sunshine rate, 

sunshine duration or sunshine rate is a climatological 

indicator, measuring duration of sunshine in given period 

(usually, a day or a year) for a given location on Earth, 

typically expressed as an averaged value over several 

years. Global solar radiation, the solar radiation that 

reaches the Earth's surface without being diffused is called 

direct beam solar radiation. The sum of the diffuse and 

direct solar radiation is called global solar radiation. 

Atmospheric conditions can reduce direct beam radiation 

by 10% on clear, dry days and by 100% during thick, 

cloudy days. Wind speed, wind speed is a strong 

determinant of fog. High wind speeds can act to dissipate 

mist before it forms into a thicker layer of fog. Low wind 

speeds allow for turbulent mixing, which spreads cooling 

vertically, deepening the fog layer. Wind direction, 

dependent on the lead time at which it is sampled, wind 

direction is either an indicator of synoptic situation (at a 

long lead) or local conditions (short lead). When 

employed in unison with wind speed, forecasters can 

derive an indication of fog likelihood based on the 

characteristics of both parameters. For example, at the 

longer lead time, afternoon southeasterlies are usually 

indicative of a synoptic situation not conducive of fog. 

However, at a shorter lead time (during nocturnal periods), 

mild southeasterlies are symptomatic of katabatic 

drainage flows. While these flows are often necessary for 

fog formation, they occur almost every night during the 

year, and as such their presence offers little predictive 

capability. The above weather information are cross-

related. For example, air density is related to air 

temperature and pressure, so as temperature is also related 

to wind speed (WS) and wind direction (WD). The data is 

in a 10  366 matrix. Temperature is the feature to be 

predicted in this study, and the remaining features will be 

used as input for training the LSTM model. 

 

4. Aviation Weather Prediction 
The network by using LSTM is depicted Figure 3. A 

sequence input layer is first applied to the network in the 

LSTM layer. By setting with the hidden units of 500 from 

the hidden state. The hidden state is the output of an 

LSTM layer, and the hidden unit is corresponding to the 

amount of information remembered between the hidden 

state. The fully connected layer is to map output of LSTM 

layer to a desired output size, and the regression layer is 

to compute the half-mean-squared-error loss. Before 

fitting the database into the LSTM, the data will be 

divided into 90% for training set and 10% for testing set. 

The former is to fit the model and the latter is to validate 

the model by comparing its prediction of with the original 

data. 

This paper creates a set of options for training the 

LSTM network using adaptive moment estimation 

algorithms [23]. Reduce the learning rate by a factor of 

0.005 every epoch. The learning rate is to control how 

much to change the model in response to the estimated 

error each time the model weights are updated. If the 

learning rate is too low, then training takes a long time. If 

the learning rate is too high, then training might reach a 

suboptimal or even diverge. The maximum number of 

epochs for training is set to 250, to measure the number of 

times of the training sets. The learning rate schedule is set 

to ‘piecewise’, which means the software updates the 

learning rate every certain number of 250 epochs by 

multiplying with the learning rate factor 0.005. And set 

learning rate drop factor for 0.2, it is a multiplicative 

factor to apply to the learning rate every time a certain 

number of epochs passes. The gradient threshold is set to 

1, which is used to clip gradient values that exceed the 

gradient threshold. After training the model by the training 

set, a figure of training progress displayed to confirm 

whether the model is overfitting or not. The testing data is 

then prepared to make a prediction by the LSTM model. 

The Mean Absolute Percentage Error (MAPE) and Root 

Mean Squared Error (RMSE) are employed as 

performance indicators. 

MAPE = 
1

n
∑ |(y

i
− y

î
)/y

i
|n

i=1   (8) 

RMSE = √
1

n
∑ (y

i
− y

î
)

2n
i=1   (9) 

where 𝑛  is the number of observed data, y
i
  is the real 

value and y
î
 is the forecast value. 

The RMSE of using remaining 9 features to predict 

the temperature is 2.8518, and the MAPE is 14.8993%. In 

order to obtain better results, each feature is then deleted 



4 
 

and the remaining 8 features are used to train the LSTM 

model, respectively. The result of each training is shown 

as Table 1. The purpose is to know which feature has the 

less effect on predicting the temperature. The results show 

that when deleted the features of wind speed, wind 

direction, sunshine rate and global solar radiation has the 

lowest RMSE than using 9 features for training. For 

verification that this assumption is correct, the above four 

features are then using cross-comparison as Table 2 shown 

below. The first six are deleting 2 features and using the 

remaining 7 features to train the model, then predict the 

feature of temperature. The seventh to the tenth are 

deleting 3 features and using the remaining 6 features to 

make a training. And the last one is deleting 4 features and 

using the remaining 5 features to train the model in order 

to make a prediction. The results of above three training 

are shown in Figure 4, Figure 5 and Figure 6. Figure 4 is 

the prediction of using 7 features to train the model, Figure 

5 is the prediction of using 6 features to train the model 

and Figure 6 is the prediction of using 5 features to train 

the model. 

Deleting the feature of wind speed, wind direction, 

sunshine rate and global solar radiation do decrease the 

prediction error. Table 3 shows that the lowest 4 RMSE of 

the combinations by using 8 features are deleting the 

features of wind speed, wind direction, sunshine rate and 

global solar radiation, respectively. In order to predict the 

temperature, at least 6 features are needed for training the 

model. If the amount of features is reduced to 5, the error 

will increase to 3.0529, it is larger than the 9 features 

prediction’s RMSE 2.8518, which is used as a benchmark 

for comparing the rest of the prediction’s error. This result 

shows that the proposed LSTM model can accurately train 

the parameters and explore the behavior of the deep 

learning network on the aviation weather numerical data. 

In this study, a new data point is predicted based on the 

training of the network, and after using the new data point 

to retrain the network, another new data point is then 

predicted. The experimental results are confirmed that the 

aviation weather numerical data can be well-trained for 

the proposed LSTM model and make an accurate 

prediction. 

 

5. Conclusion 
This paper presents a weather forecast based on 

LSTM neural network. By using a dataset of 10366 

matrix, 90% of the data for training and 10% for testing. 

The results show that different combinations of features 

will have different effects on weather forecast accuracy. 

The temperature forecast with the feature combination of 

sea pressure, dew point, relative humidity, wind speed, 

global solar radiation, visible mean and cloud amount is 

the best. It can achieve the lowest RMSE to 2.3872 and 

decrease the MAPE to 10.8682%. 

Data preprocessing is necessary before fitting the 

data to LSTM in deep learning. It is needed to improve 

training convergence and reduce training time because the 

data is usually varying so vastly in terms of magnitude. If 

there is a lot of irrelevant and redundant information or 

noisy and unreliable data, it will be more difficult to 

discover knowledge during the training. 

In this paper, an important feature analysis has been 

developed to modify the model by eliminating redundant 

attributes. The impact of preprocessing increases the 

reliability of the long short-term memory network model, 

which can successfully avoid the complexity of the system; 

hence the results can increase the reliability of predicting 

system to further help aviation weather forecasting and 

strategy planning. 
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Table 1 The RMSE and MAPE of deleting each feature 

and using the remaining 8 features for aviation weather 

forecasting. 

Deleted feature RMSE MAPE(%) 

Sea pressure (SP) 3.0532 16.7177 

Dew point (DP) 3.6428 18.0390 

Relative humidity (RH) 2.9147 15.0753 

Wind speed (WS) 2.5330 11.6201 

Wind direction (WD) 2.7290 13.6250 

Sunshine rate (SR) 2.4359 11.4736 

Global solar radiation (GR) 2.5498 12.3533 

Visible mean (VM) 3.5909 17.8495 

Cloud amount (CA) 2.8136 13.6726 

 
Table 2 The RMSE of using cross-comparison to delete 

the feature of wind speed, wind direction, sunshine rate 

and global solar radiation for aviation weather forecasting. 

Predict No. Deleted feature RMSE MAPE(%) 

Pred1 WS, WD 2.4998 11.4908 

Pred2 WS, SR 2.3872 10.8682 

Pred3 WS, GR 2.6472 12.7754 

Pred4 WD, SR 2.5108 11.5507 

Pred5 WD, GR 2.4035 11.2144 

Pred6 SR, GR 2.4160 11.2703 

Pred7 WS, WD, SR 2.6265 12.6844 

Pred8 WS, WD, GR 2.5727 12.3635 

Pred9 WD, SR, GR 2.6655 13.2152 

Pred10 WS, SR, GR 2.5396 11.7674 

Pred11 WS, WD, SR, GR 3.0529 15.2678 

 

Table 3 The RMSE and MAPE with different feature 

combinations. 
Training 

features 

Feature 

combinations 
RMSE 

MAPE 

(%) 

5 
SP+DP+RH 

+VM+CA 
3.0529 15.2678 

6 

SP+DP+RH 

+WD+VM+CA 
2.5396 11.7674 

SP+DP+RH 

+WS+VM+CA 
2.6655 13.2152 

SP+DP+RH 

+SR+VM+CA 
2.5727 12.3635 

SP+DP+RH 

+GR+VM+CA 
2.6265 12.6844 

7 

SP+DP+RH+WS 

+WD+VM+CA 
2.4160 11.2703 

SP+DP+RH+WS 

+SR+VM+CA 
2.4035 11.2144 
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SP+DP+RH+WS 

+GR+VM+CA 
2.5108 11.5507 

SP+DP+RH+WD 

+SR+VM+CA 
2.6472 12.7754 

SP+DP+RH+WD 

+GR+VM+CA 
2.3872 10.8682 

SP+DP+RH+SR 

+GR+VM+CA 
2.4998 11.4908 

8 

SP+DP+RH+WS 

+WD+SR+GR+VM 
2.8136 13.6726 

SP+DP+RH+WS 

+WD+SR+GR+CA 
3.5909 17.8495 

SP+DP+RH+WS 

+WD+SR+VM+CA 
2.5498 12.3533 

SP+DP+RH+WS 

+WD+GR+VM+CA 
2.4359 11.4736 

SP+DP+RH+WS 

+SR+GR+VM+CA 
2.7290 13.6250 

SP+DP+RH+WD 

+SR+GR+VM+CA 
2.5330 11.6201 

SP+DP+WS+WD 

+SR+GR+VM+CA 
2.9147 15.0753 

SP+RH+WS+WD 

+SR+GR+VM+CA 
3.6428 18.0390 

DP+RH+WS+WD 

+SR+GR+VM+CA 
3.0532 16.7177 

9 
SP+DP+RH+WS+W

D+SR+GR+VM+CA 
2.8518 14.8993 

 

 
Figure 1 The structure in a standard RNN contains a single 

layer, where 𝑥 is the input, ℎ is the output and tanh is 

the tangent function, the subscript t-1, t, and t+1 is the 

previous, present, and next time step, respectively. 

 

 
Figure 2 The structure in an LSTM contains four 

interacting layers by using feedback connection, where × 

is the pointwise multiplication, +  is the pointwise 

addition, 𝜎 is the sigmoid function, f
t
 is the forget gate, 

it  is the input gate, ot  is the output gate and C̃t  is the 

cell state. 

 
Figure 3 The structure of LSTM model for aviation 

weather forecasting. 

 

 
Figure 4 Temperature prediction by using 7 features in 

Table 3 for aviation weather forecasting. 

 

 
Figure 5 Temperature prediction by using 6 features in 

Table 3 for aviation weather forecasting. 

 

 
Figure 6 Temperature prediction by using 5 features in 

Table 3 for aviation weather forecasting. 

 


