## 以人工智慧方法進行多天氣變數系集預報場推估至測站降水研究

羅世軒1張鶴齡1薛宏宇1劉家豪1張庭槐2江晉孝3

1 麗臺科技股份有限公司 2 中央氣象局氣象資訊中心 3 中央氣象局氣象科技研究中心

摘要

全球數值天氣預報模式所需的計算機資源龐大,其產出為等距離或等經緯的固定網格 點資料,為了能提供一般大眾生活場域之預報時,必須透過額外空間降尺度(downscaling) 方法,將空間解析度較粗的預報資料轉化到次網格點位置上。然而,影響天氣變化的因子 往往是多種不同的參數,因此本次研究採用了 8 種變數資料(850200、850210、850510、 925500、500000、850000、SSL010、B02100),在測站預報上也常透過統計方法進行多氣 象變數的模型建置,作為修正數值模式的預報誤差使用。本研究導入深度學習(deep learning) 模型,透過深度學習特徵提取及多層類神經網路的概念,運用深度學習模型中整合了空間 降尺度及數值模式資料後處理等技術。

本研究使用中央氣象局提供全球數值模式系集預報資料,取 2018 年 06 月到 2020 年 012 月的逐 6 時 8 種變數 21 系集成員預報場(解析度 0.5 度),並透過人工智慧模型針對此兩個季節資料進行臺灣 28 人工觀測站進行累積 12 小時降雨量推估。在深度學習模型使用上採用具備時間解析能力的 3D Resnet 模型 - slow R50 版本。模型推估出臺灣 28 站測站降水量 RMSE(root mean square error)結果。結果顯示冬季、梅雨季平均誤差值分別為 5.4 mm 與 5.6 mm。推估結果優劣除了受到 8 種參數的影響外,各個觀測案的降水事件次數也不同,導致模型對於不同觀測站的降水量推估效果都不盡相同,整體的推估結果均優於使用 2D Resnet 模型的結果,由此可以知道,具備時間解析能力的 3D Resnet 模型能抓出不同時間點的抽象特徵,進而推估出較佳的降水量,因此該模型更適合分析累積降水量資料。本次研究採用了 RTX A6000 進行模型運算加速,與純 CPU 計算相比,GPU 運算比 CPU 快了 25 倍左右。

關鍵字:人工智慧、深度學習、3D - Resnet、系集資料、降水量

## 前言

全球數值天氣預報模式所需的計算機資源龐大, 能產出等距離或等經緯的網格點資料,為了快速且 不耗費太多運算資源的條件下,提供一般大眾生活 場域之預報,必須透過額外空間降尺度(downscaling) 方法,以產出更精細的預報結果。然而,降水氣象 變數預報,往往受到多種氣象變數因子影響,在測 站預報上也常透過統計方法進行多氣象變數的模型 建置,作為修正數值模式的預報誤差使用。本研究 導入深度學習(deep learning)模型,透過深度學習特 徵提取和多層類神經網路的概念,在深度學習模型 中整合了時間、空間降尺度及數值模式資料後處理 等技術。

本文主要透過 CNN 架構中的 3D Resnet[1]深度 學習方法進行各測站降水推估,該方法原本用於影 片物件偵測辨識技術[2],而模型具有納入不同時間 點之間的差異的特性,應該處理如天氣預測這類時 間序列資料的問題。因此,本研究也比較了不考慮 時間點差異的 2D Resnet 模型的分析結果。兩種模型 所使用的輸入資料皆相同,主要差異在於模型輸入 資料的排列形狀不同。透過更換輸出層神經網路, 使得模型之輸出數值如同迴歸分析產出之數值型態, 本篇降雨預測之輸出即為預測降水量。本研究使用 系集全球模式預報的多組氣象變數產出之預報場作 為輸入資料,每個變數使用逐6小時預報場,並將 每12小時合併成一筆輸入資料作為x數值,建置一 個模型可推估12小時累積降水氣象變數。3D Resnet 方法相較於傳統的線性迴歸分析有著更高的神經網 路層數與殘差網路架構[3],同時加入了時間卷積[5] 的概念,相較於一般的深度迴歸模型可以提取更高 維度抽象特徵,同時又可以評估不同時間點間提取 出來的抽象特徵影響程度,進而估計更真實觀測的 數值,也能解決線性模式常無法解決之離群值 (outlier)。

CNN 模型架構都有另一項優勢在於具有遷移式 學習的特性,例如當完成第一版深度學習模型後, 後續若欲持續加入新圖型優化模型,可不需重頭訓 練,僅需於第一版模型加入新圖型訓練即可。這樣 可增加模型更新的效率,未來在應用於不同區域 (如東亞或全球)時,也可以此模型為基礎進行模型開 發。

## 二、資料來源與格式

本研究使用系集全球模式預報輸出中的8種氣 象變數氣象變數(850hPa的U分量風、850hPa的V 分量風、850hPa相對濕度、925hPa水氣通量、500hPa 重力位高度、850hPa重力位高度、海平面氣壓、地 面2公尺高的溫度),採用東亞區域0.5°解析度, 東經100°至140°北緯15°至40°,網格點為81× 51,分布範圍如圖1所示,包含北方、南方和東方 海面的影響因素範圍。



研究觀測資料使用降水資料為12小時的累積降水量,累積的時間採用與數值模式相對應的時間, 中央氣象局人工觀測站的數量為32站資料。

另外,由於研究分析的範圍未包含金門及馬祖, 以及五分山及墾丁二雷達站觀測值皆為缺值,故實 際模型建置分析之人工測站數量為28站,如表1所 示為實際模型建置分析之人工測站列表。

表1深度學習模型分析目標觀測站列表

| #  | 代號     | 名稱  | #  | 代號     | 名稱  | #  | 代號     | 名稱  |
|----|--------|-----|----|--------|-----|----|--------|-----|
| 1  | 466880 | 板橋  | 11 | 467080 | 宜蘭  | 21 | 467550 | 玉山  |
| 2  | 466900 | 淡水  | 12 | 467300 | 東吉島 | 22 | 467571 | 新竹  |
| 3  | 466910 | 鞍部  | 13 | 467350 | 澎湖  | 23 | 467590 | 恆春  |
| 4  | 466920 | 臺北  | 14 | 467410 | 臺南  | 24 | 467610 | 成功  |
| 5  | 466930 | 竹子湖 | 15 | 467420 | 永康  | 25 | 467620 | 蘭嶼  |
| 6  | 466940 | 基隆  | 16 | 467440 | 高雄  | 26 | 467650 | 日月潭 |
| 7  | 466950 | 彭佳嶼 | 17 | 467480 | 嘉義  | 27 | 467660 | 臺東  |
| 8  | 466990 | 花蓮  | 18 | 467490 | 中   | 28 | 467770 | 梧棲  |
| 9  | 467050 | 新屋  | 19 | 467530 | 阿里山 |    |        |     |
| 10 | 467060 | 蘇澳  | 20 | 467540 | 大武  |    |        |     |

數值系集資料為逐6小時預報資料與測站資料 為1小時觀測資料,收集的資料長度皆為2018年6 月1日至2020年12月31日。詳細內容如表2說明, 各地區的降水事件不同且並非連續發生,降水氣象 變數受到季節、地形和緯度分布的影響相當大,所 以各個測站的實際雨量與可推估的情況都有不同程 度的影響。本次研究使用的梅雨季5、6月資料,這 段時間的各測站地區降水的事件發生次數較多且分 布面積較廣。

表2 系集預報數值氣象模式資料規格

| 名稱    | 内容                                 |
|-------|------------------------------------|
|       | 850 hPa U、850hPa V、850Pa RH、       |
| 氣象變數  | 925hPa Q、500hPa H、850hPa H、海       |
|       | 平面氣壓、T2m                           |
| 資料格式  | GRIB2                              |
| 次的时间  | 2018年6月1日至2020年12月31               |
| 貝州时间  | 日                                  |
| 經度    | 0 <sup>0</sup> 至359.5 <sup>0</sup> |
| 緯度    | -90 <sup>0</sup> 至90 <sup>0</sup>  |
| 網格解析度 | 0.5 <sup>o</sup>                   |
| 格點數   | 720 x 361                          |
| 系集成員數 | 21                                 |
| 初始時間  | UTC 012 \cdot 024                  |

經上述表格說明,有21組系集預報,每個逐6 小時預報時資料的矩陣形狀為8×21×81×51, 研究為分析12小時累積降水量,預報長度為一天, 12小時預報之輸入資料包含00時分析場及06時與 相對應的12時預報場三組時間點資料,同樣24小 時預報之輸入資料包含12時、18時及24時預報場 資料,因每筆輸入資料×包含三個時間點的資料, 輸入資料形狀為3×8×21×81×51。

## 三、研究方法

本次研究將系集預報模式之輸出作為輸入資料, 再經由人工智慧方法進行測站點的降水預測,採用8 種氣象變數逐6小時每12小時(0012和12~18)組合 成一筆輸入資料,搭配測站實際降水觀測資料,建 構數學模型,推估測站逐時累積12小時降水量。

由於使用的輸入資料為多變量形態,所以在分 析前必須先對輸入資料進行正規化處理。再將正規 化後的輸入資料放入 2D、3D Resnet 模型中訓練並 且用測試資料驗證(如圖 2]),並且使用 RMSE (Root-Mean-Square Error)方法進行誤差校驗。



### 圖 2 研究分析流程

使用的分析資料為 8 種不同的氣象變數並且推 估 12 小時累積降水量,在放入 2D、3D Resnet 模型 分析前先做數據正規化,以確保模型在訓練過程中, 不會受到不同氣象變數單位的影響。正規化的方式 為採用全年點資料依據各別種氣象變數,各個系集 模型的各個網格點,各點做 0~1 之間的正規化處 理。

研究中採用深度學習中 CNN 架構的 2D、3D

Resnet 作為推論分析的工具。2D 與 3D Resnet 模型 最大的差異在於卷積運算的維度,其餘部分依然沿 用了 2D Resnet 的殘差網路的技術(如圖 3)。透過殘 差網路技術確保模型輸出結果不會因層神經網路的 增加,而在傳遞過程後,發生梯度消失的問題,使 得模型可以體提取出更高層次的抽象特徵。2D和3D Resnet 模型輸入的資料形狀大致相同,主要的差異 在於是否要將所有氣象變數攤平。2D Resnet 模型輸 入資料形狀為 $(B \times C \times W \times H)$ , B表示資料筆數, C表示為通道數,在研究中為時間點,最後的 W 和 H為同一時間點所有系集成員攤平成二為矩陣的結 果,W是2x7x51=714,H是4x3x81=972(如圖4a)。 3D Resnet 模型輸入資料形狀為(B × C × L × W × H), B 表示資料筆數, C 表示為通道數, 在研究 中為時間點,L表示資料長度,在研究中為變數種 類,最後的W和H為所有系集成員攤平成二為矩陣 的結果,W是7x51=357,H是3x81=243(如圖4b)。



圖 3 殘差網路架構圖,每過兩層神經網路後, 輸入值重新加上輸出值。



圖 4a 2D Resnet 系集成員資料攤平示意圖



圖 4b 3D Resnet 系集成員資料攤平示意圖

再依據8:2的比例隨機抽取8成的資料當訓練資 料集,剩下2成為測試資料集。

再放入 3D Resnet 模型中,使用了 3D Resnet 架 構中的 SlowFast Networks[2]的 slow R50 版本的模型。 為符合研究輸入輸出資料格式與結果,修改第一層 卷積神經網路的輸入通道(Channels)換成輸入的時 間點數,同時將最後一層的輸出層(Linear)結果修改 成推估的測站數量。

最後在使用 RMSE 數值顯示測試資料集推估結果。為了方便查閱,本次研究將 RMSE 數值依據 10 倍數分級距,並且使用排列圖法[4]表示推估結果坐落的 RMSE 級距百分比與各個 RMSE 級距的累積百分比。

## 四、研究結果

使用 2018 年到 2020 年梅雨季資料,隨機抽 10%當測試資料集,大約為 22 筆資料,反覆重抽 5 次,產生 5 組訓練與測試資料集。2D 和 3D Resnet 反覆對這 5 組資料訓練測試,並且統計兩種模型 5 次測試資料集結果(如圖 5)與各測站 RMSE 級距百分 比結果(如圖 6 到圖 24)。



圖 5 2D 和 3D Resnet 比較分析結果。



## 圖 6 板橋站比較結果



### 圖7淡水站比較結果



圖 8 台北站比較結果



圖 9 基隆站比較結果



圖 10 花蓮站比較結果



圖 11 新屋站比較結果



圖 12 蘇澳站比較結果



#### 圖 13 宜蘭站比較結果



## 圖 14 台南站比較結果



#### 圖 15 永康站比較結果



圖 16 高雄站比較結果



圖 17 嘉義站比較結果



### 圖 18 台中站比較結果



圖 19 大武站比較結果



圖 20 新竹站比較結果



### 圖 21 恆春站比較結果



### 圖 22 成功站比較結果





### 圖 23 台東站比較結果

#### 圖二十四 梧棲站比較結果

依據研究結果在 0~10 之間的級距可以發現 3D Resnet 的 RMSE 級距坐落百分比累績斜率大多優於 2D Resnet,只有在少部分測站 RMSE 級距略低於 2D Resnet。從上述這點可以認定 3D Resnet 在多時間點 資料上的分析能力優於 2D Resnet 模型。

同時也有其他文影像相關的獻可以佐證在多時間點的分析下, 3D CNN 架構是優於 2D CNN[5]。

## 五、結論與展望

本次研究所使用的資料量整體不多,分析的過 程將降水與非降水事件納入做分析,為了提高模型 的推估能力,採用訓練與測試的資料比為9:1,實際 作為驗證的資料數量有限,以各測站的 RMSE 級距 分布進行分析,在研究中經分析發現 3D Resnet 的推 估能力較高,分布的級距較為集中,2D Resnet 依各 測站的狀況,RMSE的級距分布較廣,說明推估的 雨量值好壞程度參差不齊。另一個問題在於數值模 式資料的空間解析度為 0.5°,在台灣地區可以呈現 的圖像特徵為幾個色塊組成的圖像,所以局部地區 的細節特徵難以表現出來,在分析上先天就存在-定誤差。同時發現與「以人工智慧方法進行系集溫 度預報場推估至測站溫度研究 [6]之研究相比,降 水的分析更加困難,主要在於溫度本身帶有地理資 訊,不同測站的都有不同的基礎溫度,但是降水分 布不連續,受影響的因素多,測站沒有降水,降水 量都為0,在初期分析的時候,自訂淺層結構的模型 收斂效果都不好,無法推估出一個精準的結果。目 前以梅雨事件作為分析,以有限的資料做出的結果, 無法判定在颱風期間或是午後熱對流強降雨事件上 3D Resnet 的推估能力能否有顯著的結果,在此引用 這方法作為深度學習的演算法在降水的應用。

本次研究採用了高層樹的 3D Resnet 模型作為 分析的工具,相較於 2D Resnet 模型計算量大幅上升, 本次研究使用 RTX A6000 GPU 作為加速平台與純 CPU 計算相比,GPU 加速提高了 25 倍左右。

# 六、參考文獻

[1]. Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition

https://openaccess.thecvf.com/content\_ICCV\_2017\_w orkshops/papers/w44/Hara Learning Spatio-Temporal Features ICCV 2017 paper.pdf

[2]. SlowFast Networks for Video Recognition, https://arxiv.org/pdf/1812.03982.pdf

[3]. Deep Residual Learning for Image Recognition, https://openaccess.thecvf.com/content\_cvpr\_2016/pape rs/He Deep Residual Learning CVPR 2016 paper.p df

[4]. Pareto chart, https://en.wikipedia.org/wiki/Pareto\_chart

[5] Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?, https://arxiv.org/pdf/1711.09577v2.pdf

[6].以人工智慧方法進行系集溫度預報場推 估至測站溫度研究,

http://conf.cwb.gov.tw/media/cwb\_past\_conferences/1 09/A7%E4%BA%BA%E5%B7%A5%E6%99%BA% E6%85%A7(AI)%E4%B9%8B%E6%B0%A3%E8%B 1%A1%E6%87%89%E7%94%A8/A7\_O\_N05\_%E5% BC%B5%E9%B6%B4%E9%BD%A1.pdf