秋季太平洋副高指數統計季節預報模式與可預報度來源分析

李清縢^{1,3}、李思瑩^{1,3}、林昀靜^{1,3}、張庭槐²

Ching-Teng Lee^{1,3}, Szu-Ying Lee^{1,3}, Yun-Ching Lin^{1,3}, Ting-Huai Chang²

中央氣象局科技中心1、中央氣象局資訊中心2、資拓宏宇國際股份有限公司氣象科技事業處3

摘要

透過具有物理概念統計預報方法建立秋季(9-10 月平均)太平洋副高指標季節預報方程式, 選定兩個不同範圍的西北太平洋副高指標,分別為 WPSHW (110°E-130°E, 15°N-25°N)與 WPSHE(130°E-150°E, 15°N-25°N)區域平均在秋季的 850 百帕重力位高度,此兩副高指標分 別代表秋季西北太平洋地區的第1與第2個經驗正交函數的主模態空間特徵。此二個副高指 標透過同時相關分析可以得到,當 WPSHW 指標偏強時,赤道西太平洋負距平海溫與東太平 洋正距平海溫,伴隨著北印度洋到西北太平洋有強烈反氣旋式環流。當 WPSHE 偏強時,中赤 道太平洋為顯著負距平海溫伴隨著整個西北太平洋為反氣旋式環流。透過此物理概念方法選 取適合的預報因子並且建立統計迴歸預報模式,最後 WPSHW 指標選取的預報因子有三個, 而 WPSHE 指標選的預報因子有四個,將此統計預報模型經過交叉驗証方法,可以得到整體 預報結果與觀測值有 0.49 與 0.43 的相關係數值,代表此兩個統計預報方程是具有預報技術。 關鍵字: 秋季西北太平洋副高指數、季節預報

一・前言

台灣從梅雨季開始到夏秋季,氣候季節變特性都跟 太平洋副熱帶高壓的位置習習相關。梅雨季開始的時 候,若位置副熱帶高壓位於臺灣附近,使得暖溼氣流 無法直接進入台灣,導致帶來降雨會明顯偏少,相反 的,此時台灣就是長時間處於高溫酷熱的情況之下。

夏秋季節時,太平洋副熱帶高壓位置跟台灣地區極 端高溫以及侵台颱風都明顯有關。西北太平洋颱風活 躍度與移動路徑都是受到西北太平洋的副熱帶高壓與 季風槽兩者相對強弱與位置所影響。當颱風個數少與 低活躍度的年份,副高就會偏強且往西擴張,季風槽 就相對偏弱,台灣地區也會有極端高溫、侵台颱風偏 少的情形發生。所以太平洋副熱帶高壓的強勢與位置 都和台灣氣候有重要的關係。

Wang et al. (2012) 定義了夏季(JJA)西北太平洋副

高指數,採用的 850 毫巴重力位高度(H850)在 115°E-150°E;15°N-25°N 區域平均來當指標,此指標 主要是跟東亞夏季季風(East Asian summer monsoon) 與西北太平洋颱風活動有著高度相關性,另外指出此 指標也和東亞岸沿侵襲的颱風個數也有高相關,所以 透過物理概念方法找出預報因子進而建立了統計預報 方程,此方程經過過交叉驗証方法與檢驗預報技得 到,此統計預報方程具有高度的預報能力,因此氣象 局也已將此西北太平洋副高指數的統計預報方法建立 作業化預報方程,每年執續更新與檢驗。

目前夏季(JJA)的西北太平洋副高指數已有作業化 預報方程,然而秋季(SO)的太平洋副熱帶高壓的強弱 與位置變化也會對西北太平洋颱風與季風有影響,所 以本研究將依據 Wang et al(2012)的方法,嘗式建立秋 季太平洋副熱帶高壓指數的預報方程。

二・觀測資料

本研究所使用是觀測資料有 National Centers for Environmental Prediction(NCEP) 在西元 2010 年推出 的高解析度大氣格點重分析資料,資料名稱為 Climate Forecast System Reanalysis (CFSR 重分析資料),此資 料屬於第三代的氣象再分析資料,也是目前解析度最 高的再分析產品 (Suranjana et al., 2010)。CFSR 資料 垂直分層由 1000mb 到 1mb,共 37 層;等壓面上水 平解析度為 $0.5^{\circ} \times 0.5^{\circ}$; 資料涵蓋時間自 1979 年至 2020 年,共 31 年。另外海平面溫度是採用 ERSSTv2 版本(Huang et al., 2017),資料解析度為 $1^{\circ} \times 1^{\circ}$ 。

三·秋季西北太平洋副熱帶高壓空間

變化特徵

首先針對 1991 年-2020 年在 100-180°E 與 0-40°N 區域透過經驗正交函數分析方法(Empirical orthogonal function; EOF)來了解此區域內 H850 的變異特徵。由 圖 1 分別代表三個不同的 EOF 空間形態特徵與主成分 分析(Principal Component Analysis; PCA)的時間序列 圖。由第一個 EOF 空間形態特徵可以看到,副高是呈 現出東北-西南走向,整個副高脊從北太平洋一直往西 南延伸至菲律賓地區,此形態佔全部變異量約 38.22%,從 PCA 時間序列可以看到,較強的個案發生 在 1998,1999,2005,2008,2010,2011 年,而且此時間序 列似乎有個長達 10 年以上的週期震盪。

第二個 EOF 形態特徵顯示西北太平洋副高是呈 現出對稱的關係,最強的正負中心分別落在南海地區 與北太平洋地區,此形態佔全部變異量約 22.81%,從 PCA 時間序列可以看到,若以南海地區的副高偏強的 時間序列來看,較強個案發生在 1993,1997,2004,2015 年。第三個 EOF 形態特徵則是呈現出的西北太平洋與 日本型態,這是所謂的 Pacific-Japan pattern(PJ pattern),最強的負中心位置在台灣的東邊海面上(約 135°E, 20°N),此形態佔全部變異量約 13.49%,另外 從 PCA 可以看到,在 2013 年有發生最強的正距平, 其次是 1994,2004 與 2005 年。

為了更進一步了解各個 EOF 模態與海溫、環流場 之間的相關特性,分別將各個 PCA 與秋季(SO)海溫及 環流場做同時相關分析,由圖2所示,可以看到第一 個 EOF 形態與海溫(SST)、海平面氣壓(SLP)及 850 毫 巴風場(UV850)的相關係數分佈圖,圖中顯示整個西 北太平洋為反氣旋式環流,中赤道太平洋為顯著負相 關,代表 SO 季節時當西北太平洋副高偏強時,赤道 中太平洋為負距平海溫且伴隨著西北太平洋為反氣旋 式環流特徵,這就類似反聖嬰現象特徵。從第二個EOF 形態與 SST.SLP.UV850 的空間相關分佈圖來看,赤道 海温呈現出對稱的情形,西太平洋負相關而東太平洋 正相關,整個北印度洋到東亞都為反氣旋式環流,此 代表當赤道西太平洋有顯著的負距平海溫且東太平洋 則為正距平海溫,則會伴隨著北印度洋到東亞地區發 生反氣旋式環流。第三個 EOF 形態與 SST, SLP, UV850 的空間相關分佈圖則是呈現出局部特徵環流現象,類 似 PJ Pattern,在台灣東邊有反氣旋式環流,而日本則 是氟旋式環流,只有在北太平洋的海溫有較大的相關 性,赤道地區的海溫則無相關性。

四·建立具有物理概念統計預報模型

分析 1979-2017 年秋季(SO)850 毫巴的重力位高 度(H850)的變異量(圖 3),由於圖 3 可以看到,在台灣 南邊有出現最大變異量,圖中根據重力位高度最大變 異量地方,定義秋季兩個不同區域平均來當作副高指 數,分別是 WPSHW (110°E–130°E, 15°N–25°N)與 WPSHE(130°E–150°E, 15°N–25°N),圖中可以看到定 義的兩個區域剛好落在兩個不同最大變異量地區。

從上節的 EOF 空間分析可以發現,秋季時西北太 平洋副高指數偏強時,有二個主要的海溫與環流場空 間分佈特徵,第一個特徵是當赤道中太平洋有負距平 海溫、西北太平洋有正距平海溫,此時西北太平洋為 反氟旋式環流特徵。第二個則是當有聖嬰發展時,赤 道西太平洋負海溫,東太平洋正海溫,此時在整個北 印度洋到南海都是反氟旋式環流特徵。 分別將 WPSHE 與 WPSHW 指標與秋季(SO)海溫 及環流場做同時相關(如圖 4 所示)。可以看到 WPSHE 與海溫,環流場的相關係數圖和第一個 EOF 形態相關 係數圖相同(圖 2 左圖),同樣也是呈現出赤道中太平 洋海溫負相關、西北太平洋海溫正相關,而且此 WPSHE 指標與第一個 PCA 時間序列有 0.7 的高相關 數值。另外在 WPSHW 的空間相關係數圖也是和第二 個 EOF 形態相關係數圖相同,都呈現出赤道西太平洋 負相關,東太平洋正相關,而且與 PCA 更高達 0.9 以 上的相關係數值,所以此二個區域平均分別來當作秋 季的副高指標(WPSHE & WPSHE)是具有代表性與合 理性。

分別將 WPSHE 與 WPSHW 指標分別對 SST 與環 流場作促延時相關係數圖,圖5顯示 WPSHW 指標分 別 7-8 月平均(JA)的 SST、7-8 月平均(JA) U850 以及 8 月減4月的海溫延時相關係數分佈圖,從各個相關係 數分佈圖中選取適合的預報因子,分別是 JA 東太平 洋海温的正相關區域減去西太平洋的負相關區域 (JAsst EPmWP, EP 區域為 160W-90W, 5S-5N, WP 區 域為 150-170E, 15S-10N), JA 西太平洋 U850(JAu850_WP, WP 區域為 150-180E, 5S-5N)以及 8月減4月的東太平洋海溫的正相關區域減去西太平 洋的負相關區域(8m4sst EPmWP, EP 區域為 120W-90W,10S-10N , WP 區域為 150-170E, 15S-10N)。將選取的三個預報因子與 WPSHW 指標建 立多變數統計迴歸模型並且進行交叉驗証(圖 6 所 示),圖中黑色為 WPSHW 的觀測指標,紅色為使用 9 點的交叉驗証方法所得到的結果 (leave-nine-out cross-validation), 兩個相關係數值分別 是 1979-2020 年以及 1991-2020 年都為 0.49 的數值, 此數值具有高度的統計顯著性,而且主要的兩個高點 1997 年與 2015 年,統計預報都有捉到,但低點則不 太理想,不過整體而言,此WPSHW 指標的統計預報 方程是具有預報技術。

圖 7 顯示 WPSHE 指標分別 7-8 月平均(JA)的 SST、7-8 月平均(JA) U850、8 月減 3 月以及 7 月減 5 月的海溫延時相關係數分佈圖,從各個相關係數分佈 圖找出適合的預報因子,分別是 JA 中太平洋海溫的 負相關區域(JAsst_CP, CP 區域為 170E-170W, 0-15N), JA 東太平洋 U850(JAu850_EP, EP 區域為 140W-130W, 15N-20N),8月減3月的北太平洋海溫 的負相關區域(8m3sst_NP, NP 區域是 170W-140W,15N-25N)以及7月減5月的赤道西太平洋 海溫的正相關區域(7m5sst_WP, WP 區域是 170W-140W,15N-25N)。

將選取的四個預報因子與 WPSHE 指標建立多變 數統計迴歸模型並且進行交叉驗証(圖 8 所示),圖中 黑色為 WPSHW 的觀測指標,紅色為使用 9 點的交叉 驗 証 方 法 所 得 到 的 結 果 (leave-nine-out cross-validation),兩個相關係數值分別 是 1979-2020 年以及 1991-2020 年為 0.33 與 0.49 的數 值,雖然數值都有通過統計檢定,但整體的預報能力 不如 WPSHW 指標,而且 2013 年的最低點預報有較 大誤差,雖然此 WPSHE 指標的統計預報方程預報能 力仍需改進,但整體的變化趨勢是一致的。

圖 9 是顯示 2013 年 SO 季節的 SST, H850 的距平 場分佈圖,可以明顯看到,此時的 SST 並無顯著的變 化特徵,但西北太平洋有個明顯 H850 負距平存在, 日本則有顯著的正距平現在,此 2013 年的環流分佈特 徵與 EOF 第三個模態(圖 1 右圖)相同,而且從 PCA 更 可看到 2013 年數值也是異常高,代表 2013 年是屬於 局部環流特徵(PJ Pattern),由於此特徵屬於局部的環 流特微,所以利用海溫及環流場之大尺度預報因子所 建立的統計預報方程才會有較大誤差發生。

五・結論

本文章嘗試利用物理概念模式來建立秋季太平洋 副高指標預報方程,定義兩個秋季的副高指標區域分 別 是 WPSHW (110°E-130°E, 15°N-25°N)與 WPSHE(130°E-150°E, 15°N-25°N)區域平均的850毫 巴重力位高度,這兩個副高指標可分別代表秋季第1 與第2個EOF空間模態。這二個副高指標分別代表的 空間大尺度環流特徵是聖嬰現象與中太平洋的反聖嬰 現象,主要是當 WPSHW 強的時候,赤道西太平洋為 負距平海溫與東太平洋正距平海溫,且伴隨著北印度 洋到西北太平洋的反氣旋式環流。當 WPSHE 強的時 候,中赤道太平洋為顯著負距平海溫伴隨著整個西北 太平洋為反氣旋式環流。

透過物理概念方法來選取合適的預報因子, WPSHW 指標選取的預報因子有三個,分別是 JA 東 太平洋海溫的正相關區域減去西太平洋的負相關區域 (JAsst_EPmWP),JA 西太平洋 U850(JAu850_WP)以及 8 月減4月的東太平洋海溫的正相關區域減去西太平 洋的負相關區域(8m4sst_EPmWP),經過交叉驗証方 法,可以得到預報結果與觀測有高達 0.49 的相關係數 值,代表此統計預報方程是具有預報技術。

另外 WPSHE 指標選的預報因子有四個,分別是 JA 中太平洋海溫的負相關區域(JAsst_CP), JA 東太平 洋 U850(JAu850_EP), 8 月減 3 月的北太平洋海溫的 負相關區域(8m3sst_NP)以及7月減5月的赤道西太平 洋海溫的正相關區域 (7m5sst_WP),利用這四個預報 因子建立的統計預報方程,經過交叉驗証方法,可以 得到預報結果與觀測有 0.43 的相關係數值,雖然相關 係數不高,但整體的預報表現變化趨勢和觀測相似。

六・參考文獻

- Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, H. M. Zhang, 2017: Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205.
- Suranjana, and Coauthors, 2010: The NCEPClimate forecast system reanalysis. Bull. Amer.Meteor. Soc., 91, 1015–1057.
- Wang, B, B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Nat Academy Sci., 110, 2718–2722.

圖1.1991-2020年H850的第1、第2、第3(由左至右)EOF空間形態與PCA時間序列圖。各圖上圖為EOF空間分佈圖, 下圖為PCA時間序列圖,百分比代表可解釋變異量。

圖2. H850的前三個(由左至右)EOF空間形態與PCA與SST(shade), SLP(contour),UV850(vector)對秋季的同時相關 係數分佈圖,圖中只顯示相關係數值有通過95%的統計檢定。

圖 3. 1979-2017 年秋季(SO) 850 毫巴重力位高度變異量之空間分佈圖。圖中紅色方框為130°E-150°E, 15°N-25°N, 藍色方框為110°E-130°E, 15°N-25°N)。

圖4. WPSHE(左圖)與WPSHW(右圖)分別對SST(shade),SLP(contour), UV850(vector)秋季(SO)的同時相關係數分

佈圖。圖中只顯示相關係數值有通過95%的統計檢定。

圖 5. WPSHW 指標對 JA 季節 SST(左圖)、JA 季節 U850(中圖)與 8 月減 4 月 SST(右圖)之延時相關係數分佈圖,

圖中只顯示相關係數值有通過95%的統計檢定。

YEAR

圖 6. WPSHW 觀測值(黑色)與統計模式預報值(紅色)之時間序列圖,圖中兩個相關數字代表 1979-2020 年與 1991-2020 年計算得到,表格為三分類命中表格。

圖 7. 同圖 5,但為 WPSHE 指標對 JA 季節 SST(左上圖)、JA 季節 U850(右上圖)、8 月減 3 月 SST(左下圖) 與 7

月減5月SST(左下圖)之延時相關係數分佈圖。

圖 8. 同圖 6,但為 WPSHE 觀測值(黑色)與統計模式預報值(紅色)之時間序列圖。

圖 9.2013 年秋季 SST 與 H850 之距平場空間分佈圖。