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ABSTRACT

Since Lorenz’s 1963 study and 1972 presentation, the statement “weather is chaotic’’ has been well accepted. Such a
view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with
chaos. In contrast to single type chaotic solutions, recent studies using a generalized Lorenz model (Shen 2019a, b; Shen
et al. 2019) have focused on the coexistence of chaotic and regular solutions that appear within the same model, using the
same modeling configurations but different initial conditions. The results suggest that the entirety of weather possesses a
dual nature of chaos and order with distinct predictability. Furthermore, Shen et al. (2021a, b) illustrated the following
two mechanisms that may enable or modulate attractor coexistence: (1) the aggregated negative feedback of small-scale
convective processes that enable the appearance of stable, steady-state solutions and their coexistence with chaotic or
nonlinear limit cycle solutions; and (2) the modulation of large-scale time varying forcing (heating).

Recently, the physical relevance of findings within Lorenz models for real world problems has been reiterated by
providing mathematical universality between the Lorenz simple weather and Pedlosky simple ocean models, as well as
amongst the non-dissipative Lorenz model, and the Duffing, the Nonlinear Schrodinger, and the Korteweg—de Vries
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equations (Shen 2020, 2021). We additionally compared the Lorenz 1963 and 1969 models. The former is a limited-scale,
nonlinear, chaotic model; while the latter is a closure-based, physically multiscale, mathematically linear model with ill-
conditioning. To support and illustrate the revised view, a recent short report (Shen et al. 2021c) elaborated on additional
details of monostability and multistability by applying skiing and kayaking as an analogy. To address the influence of
the revised view on real-world model predictions and analysis, as illustrated using hurricane track predictions, and to
provide a summary on the recent deployment of methods for multiscale analyses and classifications of chaotic and non-

chaotic solutions, this report further extends recent studies.
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INTRODUCTION

Two studies of Prof. Lorenz (Lorenz 1963, 1972) laid
the foundation of chaos theory that emphasize a Sensitive
Dependence of Solutions on Initial Conditions (SDIC).
While the concept of SDIC can be found in earlier studies
(e.g., Poincare 1890), the rediscovery of SDIC in Lorenz
(1963) changed our view on the predictability of weather
and climate, yielding a paradigm shift from Laplace’s
view of determinism with unlimited predictability to
Lorenz’s view of deterministic chaos with finite
predictability. Based on an insightful analysis of the
Lorenz 1963 and 1969 (L63 and L69) models, as well as
the recent development of generalized Lorenz models
(GLM, Shen 2014, 2019a,b; Shen et al. 2019), such a
conventional view is being revised to emphasize the dual
nature of chaos and order given recent studies (Shen et al.
2021a,b). To support and illustrate the revised view, a
recent short report (Shen et al. 202 1c¢) describes additional
details for the following features: (1) Continuous vs.
Sensitive Dependence on Initial Conditions (CDIC vs.
SDIC); (2) single-types of attractors and monostability
within the L63 model; (3) coexisting attractors and
multistability within the GLM; (4) skiing vs. kayaking: an
analogy for monostability and multistability; and (5) a list
of non-chaotic weather systems.

By first reviewing the above features of (4) and (5),
this report further extends recent studies to address the
influence of the revised view on real-world model
predictions and analyses by (a) viewing chaotic and non-
chaotic solutions as steering flows in order to illustrate
their impact on track predictions; (b) distinguishing
instability, chaos, and computational chaos; (c) revealing
saturation dependence on various types of solutions; and
(d) providing a summary on the recent deployment of
methods for analyzing scale interaction and detecting
multistability.

ANALYSIS AND DISCUSSION

Monostability and multistability illustrated using
skiing and kayaking

To illustrate SDIC, Lorenz (1993) applied the activity
of skiing (left in Fig 1) and developed an idealized skiing
model for revealing the sensitivity of time-varying paths
to initial positions (middle in Fig 1). Based on the left

panel, monostability appears when slopes are steep
everywhere. Namely, SDIC always appear. In comparison,
the right panel for kayaking can be used to illustrate
multistability. In the photo, the appearance of strong
currents and a stagnant area (outlined with a white box)
suggest instability and local stability, respectively. As a
result, when two kayaks move along strong currents, their
paths display SDIC. On the other hand, when two kayaks
move into the stagnant area, they become trapped,
showing no SDIC. Such features of SDIC or no SDIC
illustrate the nature of multistability.

monostability multistability
SDIC SDIC or no SDIC

. w A
Fig 1. Skiing as used to reveal monostability (left and
middle, Lorenz 1993), and kayaking as used to indicate
multistability (right, Copyright. ©Carol-
stock.adobe.com)

Skiing i

Non-chaotic weather systems

The concept of multistability suggests the possibility
for coexisting chaotic and non-chaotic weather systems.
Non-chaotic solutions have been previously applied for
understanding the dynamics of different weather systems,
including steady-state solutions for investigating
atmospheric blocking (e.g., Charney and DeVore 1979;
Crommelin et al. 2004), limit cycles for studying 40-day
intra-seasonal oscillations (Ghil and Robertson 2002),
Quasi-Biennial Oscillations (e.g., Renaud et al. 2019) and
vortex shedding (Ramesh et. al. 2015), and nonlinear
solitary-pattern solutions for understanding morning
glory (i.e., a low-level roll cloud, Goler and Reeder 2004).
Below, we present how a chaotic or non-chaotic, steady-
state solution may be viewed as a “steering” flow to
illustrate its impacts on the movement of a tropical
cyclone (TC).
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Chaotic and non-chaotic solutions as steering flows

Three types of steering flows (associated with a saddle,
a spiral source, or a spiral sink) are presented below and
two kinds of track errors (Ivan-type vs. Sandy-type) are
classified.

As discussed in Shen et al. (2021c), a chaotic solution
displays both CDIC and SDIC (Fig. 2a), corresponding to
the “regular” oscillation associated with a spiral source
and the “irregular” oscillation associated with a saddle
point (Fig. 2b), respectively. A zoomed-in view for the
spiral source and saddle point is provided in Figs. 3a and
3b, respectively. Although both points are unstable within
the Lorenz 1963 model, the saddle point provides an
essential ingredient for chaos. A trajectory near the spiral
source may “regularly” move until it shifts away from the
spiral source and towards the saddle point. Therefore,
within the Lorenz 1963 model, a chaotic solution may
display regular or irregular oscillations within short time
intervals, depending on its location (i.e., near the spiral
source or the saddle point). By comparison, the GLM
allows for the coexistence of a stable spiral sink (Fig. 3c)
and the saddle point. Hence, when a trajectory initially
begins near the spiral sink, it may behave regularly during
its entire lifetime. Such a scenario may occur when a
kayak begins in a stagnant region (e.g., Fig 1).

20

-20

Fig. 2: A time-varying chaotic solution within the Lorenz
1963 model (top) and its two-dimensional phase portrait
(bottom). A green (orange) box indicates the association
of regular (irregular) oscillation with a spiral source (a
saddle).

Figure 3 displays three types of basic flows, including
a spiral source, a saddle, and a spiral sink (from left to
right). By viewing the “solutions” in Fig. 3 as steering
flows, the above discussions suggest that flows associated

! Sandy’s sinuous track with a northwestward turn prior
to its landfall are very likely due to the complicated
multiscale interactions of Sandy with its environmental

with a spiral source or a spiral sink may lead to
incremental changes of TC movement (or to incremental
bias for TC track prediction), while a saddle point may
lead to rapid changes of TC movement. From a
perspective of steering flows, two types of TC track errors,
as shown in Fig. 4, include: (i) an Ivan (2004)-type with a
persistent track bias associated with an underestimated
sub-tropical ridge (Stewart 2004; Shen et al. 2006) and (ii)
a Sandy (2012) type with rapid diverged tracks associated
with a steering flow that contains a saddle point!,
respectively (Blake et al. 2013; Shen et al. 2013). Very
slight differences determine whether a TC (e.g., Sandy)
recurves to the northeast, or wraps back west.

Therefore, improving these track predictions requires
an analysis of the location and intensity (i.c.,
intensification or weakening) of a subtropical ridge and/or
“predicting” the potential for the appearance of a saddle
point, (e.g., whether two large-scale systems that move in
an opposite direction may approach one other).
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Fig. 3: Three basic types of solutions, including a spiral
source (a), a saddle (b), and a spiral sink (c).

| ! L
Fig. 4: Two types of track errors associated with different
steering flows. (a) Hurricane Ivan (2004) (e.g., Stewart
2004) and (b) Hurricane Sandy (2012) (e.g., Blake et al.
2013).

Instability, Chaos, and Computational Chaos

Simple definitions of instability and chaos are defined
as follows: (1) instability is defined as an unbounded
amplification, and (2) chaos is defined as a bounded time-
varying growing solution that requires solution
boundedness and, at least, one positive Lyapunov
exponent (LE, Wolf et al. 1985; Shen 2014, 2019a). Such
a definition with a positive LE and boundedness is
consistent with the definition of chaos based on SDIC.

Strictly speaking, instability (or stability) dominates
when an orbit is near the spiral source (or the spiral sink).

flows, such as upper-level troughs in the westerly jet
stream and a blocking pattern to the west and east of
Sandy (Blake et al. 2013).



Shen et al.

Such dynamics are less complicated as compared to
chaotic dynamics. Namely, better predictability is
expected. Chaotic dynamics become important or
dominate when an orbit moves closer to a saddle point.
(Note that the above discussions are based on two-
dimensional, unstable, spiral critical points. Within the
three-dimensional phase space, the unstable non-trivial
critical point may contain a 2D spiral source and a stable
manifold in the 3™ dimension, appearing as a special kind
of saddle that complicates the dynamics and, thus,
discussions).

In Lorenz (1989, 2006), the term computational
chaos was introduced for indicating the appearance of
chaotic responses associated with large time steps. Such a
feature can be illustrated using the logistic equation (Eq.
1) and the logistic map (Egs. 2a-2c), as shown below:

dX/dt =rX (1 -X), (D
Yisa = pY (1=Y,), (2a)
Y, =rAtX, /(1 + rAT1), (2b)
p=1+7rAT (2¢)
Here, T represents the time variable and At the time
step. The two time-dependent variables are X and Y, and

the two time-independent parameters are r and p. Eq. (2)
is obtained from Eq. (1) using a forward finite difference

scheme. Therefore, while Eq. (1) is continuous in time, Eq.

(2) is discrete in time. As summarized in Table 1, Eq. (1)
contains an analytical, non-chaotic solution and Eq. (2)
produces bifurcation and chaos at a large parameter, p,
requiring a large At as a result of Eq. (2c). Therefore,
“irregular responses” in Eq. (2) may be viewed as
computational chaos. Similarly, such a feature of
bifurcation was previously documented using a discrete
version of the equation for terminal velocities (e.g., Shen
and Lin 1995).

Table 1: Computational chaos illustrated using the
Logistic eq. and Logistic map in Egs. (1) and (2).

Name Type
differential

Solution Eq.

Logistic Eq. analytical, 1)

non-chaotic

Logisticmap | difference chaotic at large 2)

time steps

Saturation dependence on various types of solutions
Within nonlinear chaotic solutions, root-mean-square
(RMS) forecast errors may approach constants as time
proceeds, being saturated when sufficiently large
ensemble runs are applied. Since all of the steady-state

solutions eventually become constant, their RMS errors
may appear saturated. In contrast, nonlinear oscillatory
solutions may produce the oscillatory RMS errors (e.g.,
Liu et al. 2009). On the other hand, nonlinear oscillatory
solutions may appear as computational chaos, displaying
saturation, when insufficient temporal solutions are used.
Therefore, saturated RMS errors should not be used as a
sole indicator for revealing the chaotic nature of weather.

Methods for analyzing scale interaction and detecting
multistability

The above discussions suggest that an effective
detection of scale modulation and/or non-chaotic
solutions may lead to better predictability, improving our
confidence in numerical weather and climate predictions.
In our recent studies, in addition to the “standard” method
for computing Lyapunov Exponents (LEs) within the 5D-
9D Lorenz models (Shen 2014, 2019a), the following
methods have been deployed: (1) the Parallel Ensemble
Empirical Mode Decomposition (PEEMD) for revealing
scale interactions (Wu and Shen 2016; Shen et al. 2017);
(2) Recurrence Plots (RPs) for the analysis of multiple
African easterly waves that display differences in phases
and amplitudes (Reyes and Shen 2019; 2020); and (3) a
Kernel Principal Component Analysis (K-PCA) for
separating chaotic and non-chaotic attractors (Cui and
Shen 2021).

CONCLUDING REMARKS

An insightful analysis of the classical Lorenz 1963 and
1969 models and the development of the generalized
Lorenz model (GLM) recently suggested the following:

e The Lorenz 1963 nonlinear model with
monostability is effective for revealing the
chaotic nature of weather, suggesting finite
intrinsic predictability.

e The Lorenz 1969 model is a closure-based,
physically multiscale, mathematically linear
model with ill-conditioning; it easily captures
numerical instability and, thus, is effective for
revealing finite predictability.

* The GLM with coexisting attractors and
multistability suggests both limited and
unlimited intrinsic predictability.

»  Using selected cases within a global model (e.g.,
Shen 2019b), a practical predictability of 30 days
was previously documented.

Based on the above results, we previously proposed a
revised view on the dual nature of chaos and order with
distinct predictability in weather and climate.

To support and illustrate the revised view, a recent
report (Shen et al. 2021c) elaborated on additional details
of the monostability and multistability by applying skiing
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and kayaking as an analogy. This report further extends
related studies in order to address the influence of the
revised view on real-world model predictions and
analyses. By viewing chaotic and non-chaotic solutions as
steering flows, we identified two-types of track errors,
including Ivan (2004)-type and Sandy (2012)-type, whose
movements were impacted by a spiral source (as a
subtropical ridge) and a saddle point, respectively. The
former should be more predictable.

We additionally discussed differences surrounding
instability, chaos, and computational chaos, and
illustrated the saturation dependence on various types of
solutions. While saturated RMS errors may indicate either
chaos or computational chaos, oscillatory RMS errors are
likely associated with nonlinear oscillatory solutions. We
finally provided a summary on the recent deployment of
methods (e.g., PEEMD, RP, and K-PCA) for multiscale
analyses and classifications of chaotic and non-chaotic
solutions with the aim of identifying systems with better
predictability.
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