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摘    要 
自勞倫茲 1963	年開創性有限預報度的研究和 1972	年巧妙蝴蝶效應的比喻以來，“天氣是混沌＂的說法已被廣

泛接受。這種觀點將我們的注意力，從拉普拉斯的決定論觀點，強調的是規律性，轉向於混沌的不規律性。自

1963年以來，這樣的觀念已主宰超過半個世紀。然而，勞倫茲模式中的混沌解具有排它性，即混沌解的出現

，意謂著規律解不可能存在。相較下，在完成延伸勞氏模式成為廣義勞倫茲模式的研究中，作者和共同作者

(Shen	2019a,	b;	Shen	et	al.	2019)	強調混沌和規律解的共存性，稱之為共存吸引子。亦即在使用相同的模式和

參數下，混沌解和非混沌解都有可能出現。而他們的出現決定於初始條件。這樣的結果顯示：複雜的天氣具有

混沌和秩序的雙重性質，而這兩者具有明顯不同的可預報度。近期，我們更進一步指出以下兩種可以產生或調

變共存吸引子的機制：(1)	小尺度對流匯總的負反饋。它使穩定解得以出現，而且該解可以與混沌或非線性振

盪解共存；(2)	大尺度隨時間變化的作用力(如加熱)的調變 (Shen	et	al.	2021a,	b)。	
	
	
最近，為了重申勞倫茲模式中的結果，可以有效應用或説明現實世界中的問題。作者提供了勞倫茲模式和

Pedlosky	模式中數學的普遍性，亦即兩個模式的常微分方程組可以完全相同。同時，作者也指出存在非耗散勞

倫茲模式、Duffing、非線性薛丁格和 Korteweg-de	Vries	方程式之間的普遍性 (Shen	2020,	2021)。此外，我們

也比較了勞倫茲 1963和 1969的模式。前者是具有單穩定態的有限尺度、非線性、混沌模式，而後者是基於

閉合假設的(closure	based)，在物理上具多重空間尺度的，數學上是線性的，而數值上具有病態的模式。為了

支持和說明我們對天氣本質修正後的觀點，即混沌和秩序的雙重性質，我們最近的一份簡短報告 (Shen	et	al.	
2021c)	使用滑雪和泛舟作為類比，而加以闡述了單穩定態和多重穩定態的差異。而本報告進一步延伸相關的

研究，以期了解修訂後的觀點對真實世界數值預測和天氣分析的影響。我們將使用颶風軌跡預測來進行說明，

並且總結近來發展的分析方法，包括多重尺度交互作用的分析方法，迴歸分析方法，混沌和非混沌解的分類方

法。 

關鍵字：共存吸引子，混沌，廣義勞倫茲模式，預報度,單穩定態,多重穩定態 

 
ABSTRACT 

 
Since Lorenz’s 1963 study and 1972 presentation, the statement “weather is chaotic’’ has been well accepted. Such a 
view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with 
chaos. In contrast to single type chaotic solutions, recent studies using a generalized Lorenz model (Shen 2019a, b; Shen 
et al. 2019) have focused on the coexistence of chaotic and regular solutions that appear within the same model, using the 
same modeling configurations but different initial conditions. The results suggest that the entirety of weather possesses a 
dual nature of chaos and order with distinct predictability. Furthermore, Shen et al. (2021a, b) illustrated the following 
two mechanisms that may enable or modulate attractor coexistence: (1) the aggregated negative feedback of small-scale 
convective processes that enable the appearance of stable, steady-state solutions and their coexistence with chaotic or 
nonlinear limit cycle solutions; and (2) the modulation of large-scale time varying forcing (heating). 
 
Recently, the physical relevance of findings within Lorenz models for real world problems has been reiterated by 
providing mathematical universality between the Lorenz simple weather and Pedlosky simple ocean models, as well as 
amongst the non-dissipative Lorenz model, and the Duffing, the Nonlinear Schrodinger, and the Korteweg–de Vries 
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equations (Shen 2020, 2021). We additionally compared the Lorenz 1963 and 1969 models. The former is a limited-scale, 
nonlinear, chaotic model; while the latter is a closure-based, physically multiscale, mathematically linear model with ill-
conditioning. To support and illustrate the revised view, a recent short report (Shen et al. 2021c) elaborated on additional 
details of monostability and multistability by applying skiing and kayaking as an analogy.  To address the influence of 
the revised view on real-world model predictions and analysis, as illustrated using hurricane track predictions, and to 
provide a summary on the recent deployment of methods for multiscale analyses and classifications of chaotic and non-
chaotic solutions, this report further extends recent studies.   
 
Keywords: attractor coexistence, chaos, generalized Lorenz model, predictability, monostability,  multistability 
 
INTRODUCTION 

Two studies of Prof. Lorenz (Lorenz 1963, 1972) laid 
the foundation of chaos theory that emphasize a Sensitive 
Dependence of Solutions on Initial Conditions (SDIC). 
While the concept of SDIC can be found in earlier studies 
(e.g., Poincare 1890), the rediscovery of SDIC in Lorenz 
(1963) changed our view on the predictability of weather 
and climate, yielding a paradigm shift from Laplace’s 
view of determinism with unlimited predictability to 
Lorenz’s view of deterministic chaos with finite 
predictability. Based on an insightful analysis of the 
Lorenz 1963 and 1969 (L63 and L69) models, as well as 
the recent development of generalized Lorenz models 
(GLM, Shen 2014, 2019a,b; Shen et al. 2019), such a 
conventional view is being revised to emphasize the dual 
nature of chaos and order given recent studies (Shen et al. 
2021a,b). To support and illustrate the revised view, a 
recent short report (Shen et al. 2021c) describes additional 
details for the following features: (1) Continuous vs. 
Sensitive Dependence on Initial Conditions (CDIC vs. 
SDIC); (2) single-types of attractors and monostability 
within the L63 model; (3) coexisting attractors and 
multistability within the GLM; (4) skiing vs. kayaking: an 
analogy for monostability and multistability; and (5) a list 
of non-chaotic weather systems.  

By first reviewing the above features of (4) and (5), 
this report further extends recent studies to address the 
influence of the revised view on real-world model 
predictions and analyses by (a) viewing chaotic and non-
chaotic solutions as steering flows in order to illustrate 
their impact on track predictions; (b) distinguishing 
instability, chaos, and computational chaos; (c) revealing 
saturation dependence on various types of solutions; and 
(d) providing a summary on the recent deployment of 
methods for analyzing scale interaction and detecting 
multistability.  

 
ANALYSIS AND DISCUSSION 
 
Monostability and multistability illustrated using  
skiing and kayaking 

To illustrate SDIC, Lorenz (1993) applied the activity 
of skiing (left in Fig 1) and developed an idealized skiing 
model for revealing the sensitivity of time-varying paths 
to initial positions (middle in Fig 1). Based on the left 

panel, monostability appears when slopes are steep 
everywhere. Namely, SDIC always appear. In comparison, 
the right panel for kayaking can be used to illustrate 
multistability. In the photo, the appearance of strong 
currents and a stagnant area (outlined with a white box) 
suggest instability and local stability, respectively. As a 
result, when two kayaks move along strong currents, their 
paths display SDIC. On the other hand, when two kayaks 
move into the stagnant area, they become trapped, 
showing no SDIC. Such features of SDIC or no SDIC 
illustrate the nature of multistability.  

 

 
Fig 1. Skiing as used to reveal monostability (left and 
middle, Lorenz 1993), and kayaking as used to indicate 
multistability (right, Copyright: ©Carol- 
stock.adobe.com) 
 
Non-chaotic weather systems  

The concept of multistability suggests the possibility 
for coexisting chaotic and non-chaotic weather systems. 
Non-chaotic solutions have been previously applied for 
understanding the dynamics of different weather systems, 
including steady-state solutions for investigating 
atmospheric blocking (e.g., Charney and DeVore 1979; 
Crommelin et al. 2004), limit cycles for studying 40-day 
intra-seasonal oscillations (Ghil and Robertson 2002), 
Quasi-Biennial Oscillations (e.g., Renaud et al. 2019) and 
vortex shedding (Ramesh et. al. 2015), and nonlinear 
solitary-pattern solutions for understanding morning 
glory (i.e., a low-level roll cloud, Goler and Reeder 2004). 
Below, we present how a chaotic or non-chaotic, steady-
state solution may be viewed as a “steering” flow to 
illustrate its impacts on the movement of a tropical 
cyclone (TC).  
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Chaotic and non-chaotic solutions as steering flows 

Three types of steering flows (associated with a saddle, 
a spiral source, or a spiral sink) are presented below and 
two kinds of track errors (Ivan-type vs. Sandy-type) are 
classified. 

As discussed in Shen et al. (2021c), a chaotic solution 
displays both CDIC and SDIC (Fig. 2a), corresponding to 
the “regular” oscillation associated with a spiral source 
and the “irregular” oscillation associated with a saddle 
point (Fig. 2b), respectively. A zoomed-in view for the 
spiral source and saddle point is provided in Figs. 3a and 
3b, respectively. Although both points are unstable within 
the Lorenz 1963 model, the saddle point provides an 
essential ingredient for chaos. A trajectory near the spiral 
source may “regularly” move until it shifts away from the 
spiral source and towards the saddle point. Therefore, 
within the Lorenz 1963 model, a chaotic solution may 
display regular or irregular oscillations within short time 
intervals, depending on its location (i.e., near the spiral 
source or the saddle point). By comparison, the GLM 
allows for the coexistence of a stable spiral sink (Fig. 3c) 
and the saddle point. Hence, when a trajectory initially 
begins near the spiral sink, it may behave regularly during 
its entire lifetime. Such a scenario may occur when a 
kayak begins in a stagnant region (e.g., Fig 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: A time-varying chaotic solution within the Lorenz 
1963 model (top) and its two-dimensional phase portrait 
(bottom). A green (orange) box indicates the association 
of regular (irregular) oscillation with a spiral source (a 
saddle).  
 

Figure 3 displays three types of basic flows, including 
a spiral source, a saddle, and a spiral sink (from left to 
right). By viewing the “solutions” in Fig. 3 as steering 
flows, the above discussions suggest that flows associated 
                                                
1 Sandy’s sinuous track with a northwestward turn prior 
to its landfall are very likely due to the complicated 
multiscale interactions of Sandy with its environmental 

with a spiral source or a spiral sink may lead to 
incremental changes of TC movement (or to incremental 
bias for TC track prediction), while a saddle point may 
lead to rapid changes of TC movement.  From a 
perspective of steering flows, two types of TC track errors, 
as shown in Fig. 4, include: (i) an Ivan (2004)-type with a 
persistent track bias associated with an underestimated 
sub-tropical ridge (Stewart 2004; Shen et al. 2006) and (ii) 
a Sandy (2012) type with rapid diverged tracks associated 
with a steering  flow that contains a saddle point 1 , 
respectively (Blake et al. 2013; Shen et al. 2013). Very 
slight differences determine whether a TC (e.g., Sandy) 
recurves to the northeast, or wraps back west. 

Therefore, improving these track predictions requires 
an analysis of the location and intensity (i.e., 
intensification or weakening) of a subtropical ridge and/or 
“predicting” the potential for the appearance of a saddle 
point, (e.g., whether two large-scale systems that move in 
an opposite direction may approach one other). 

 

Fig. 3: Three basic types of solutions, including a spiral 
source (a), a saddle (b), and a spiral sink (c). 

 

Fig. 4: Two types of track errors associated with different 
steering flows. (a) Hurricane Ivan (2004) (e.g., Stewart 
2004) and (b) Hurricane Sandy (2012) (e.g., Blake et al. 
2013). 
 
Instability, Chaos, and Computational Chaos 

Simple definitions of instability and chaos are defined 
as follows: (1) instability is defined as an unbounded 
amplification, and (2) chaos is defined as a bounded time-
varying growing solution that requires solution 
boundedness and, at least, one positive Lyapunov 
exponent (LE, Wolf et al. 1985; Shen 2014, 2019a). Such 
a definition with a positive LE and boundedness is 
consistent with the definition of chaos based on SDIC. 

 Strictly speaking, instability (or stability) dominates 
when an orbit is near the spiral source (or the spiral sink). 

flows, such as upper-level troughs in the westerly jet 
stream and a blocking pattern to the west and east of 
Sandy (Blake et al. 2013).  
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Such dynamics are less complicated as compared to 
chaotic dynamics. Namely, better predictability is 
expected. Chaotic dynamics become important or 
dominate when an orbit moves closer to a saddle point. 
(Note that the above discussions are based on two-
dimensional, unstable, spiral critical points. Within the 
three-dimensional phase space, the unstable non-trivial 
critical point may contain a 2D spiral source and a stable 
manifold in the 3rd dimension, appearing as a special kind 
of saddle that complicates the dynamics and, thus, 
discussions). 

  In Lorenz (1989, 2006), the term computational 
chaos was introduced for indicating the appearance of 
chaotic responses associated with large time steps. Such a 
feature can be illustrated using the logistic equation (Eq. 
1) and the logistic map (Eqs. 2a-2c), as shown below: 

 
𝑑𝑋/𝑑𝜏 = 𝑟𝑋	(1 − 𝑋),														(1) 

 
𝑌./0 = 𝜌𝑌.	(1 − 𝑌.),																(2𝑎) 

  
𝑌. = 𝑟Δ𝜏𝑋./(1 + 𝑟Δ𝜏),										(2𝑏) 

 
𝜌 = 1 + 𝑟Δ	𝜏.																												(2𝑐) 

 
Here, 𝜏 represents the time variable and Δ𝜏 the time 

step.  The two time-dependent variables are 𝑋 and 𝑌, and 
the two time-independent parameters are 𝑟 and 𝜌. Eq. (2) 
is obtained from Eq. (1) using a forward finite difference 
scheme. Therefore, while Eq. (1) is continuous in time, Eq. 
(2) is discrete in time. As summarized in Table 1, Eq. (1) 
contains an analytical, non-chaotic solution and Eq. (2) 
produces bifurcation and chaos at a large parameter, 𝜌, 
requiring a large Δ𝜏  as a result of Eq. (2c). Therefore, 
“irregular responses” in Eq. (2) may be viewed as 
computational chaos. Similarly, such a feature of 
bifurcation was previously documented using a discrete 
version of the equation for terminal velocities (e.g., Shen 
and Lin 1995).  
 
Table 1: Computational chaos illustrated using the 
Logistic eq. and Logistic map in Eqs. (1) and (2).  

Name Type Solution Eq. 
Logistic Eq. differential analytical,  

non-chaotic 
(1) 

Logistic map difference chaotic at large 
time steps 

(2) 

 
Saturation dependence on various types of solutions 

Within nonlinear chaotic solutions, root-mean-square 
(RMS) forecast errors may approach constants as time 
proceeds, being saturated when sufficiently large 
ensemble runs are applied. Since all of the steady-state 

solutions eventually become constant, their RMS errors 
may appear saturated. In contrast, nonlinear oscillatory 
solutions may produce the oscillatory RMS errors (e.g., 
Liu et al. 2009).  On the other hand, nonlinear oscillatory 
solutions may appear as computational chaos, displaying 
saturation, when insufficient temporal solutions are used. 
Therefore, saturated RMS errors should not be used as a 
sole indicator for revealing the chaotic nature of weather.  
 
Methods for analyzing scale interaction and detecting 
multistability 

The above discussions suggest that an effective 
detection of scale modulation and/or non-chaotic 
solutions may lead to better predictability, improving our 
confidence in numerical weather and climate predictions. 
In our recent studies, in addition to the “standard” method 
for computing Lyapunov Exponents (LEs) within the 5D-
9D Lorenz models (Shen 2014, 2019a), the following 
methods have been deployed: (1) the Parallel Ensemble 
Empirical Mode Decomposition (PEEMD) for revealing 
scale interactions (Wu and Shen 2016; Shen et al. 2017); 
(2) Recurrence Plots (RPs) for the analysis of multiple 
African easterly waves that display differences in phases 
and amplitudes (Reyes and Shen 2019; 2020); and (3) a 
Kernel Principal Component Analysis (K-PCA) for 
separating chaotic and non-chaotic attractors (Cui and 
Shen 2021).  
 
CONCLUDING REMARKS 

An insightful analysis of the classical Lorenz 1963 and 
1969 models and the development of the generalized 
Lorenz model (GLM) recently suggested the following:  

• The Lorenz 1963 nonlinear model with 
monostability is effective for revealing the 
chaotic nature of weather, suggesting finite 
intrinsic predictability. 

• The Lorenz 1969 model is a closure-based, 
physically multiscale, mathematically linear 
model with ill-conditioning; it easily captures 
numerical instability and, thus, is effective for 
revealing finite predictability. 

• The GLM with coexisting attractors and 
multistability suggests both limited and 
unlimited intrinsic predictability.  

• Using selected cases within a global model (e.g., 
Shen 2019b), a practical predictability of 30 days 
was previously documented.  

Based on the above results, we previously proposed a 
revised view on the dual nature of chaos and order with 
distinct predictability in weather and climate.  

To support and illustrate the revised view, a recent 
report (Shen et al. 2021c) elaborated on additional details 
of the monostability and multistability by applying skiing 
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and kayaking as an analogy.  This report further extends 
related studies in order to address the influence of the 
revised view on real-world model predictions and 
analyses. By viewing chaotic and non-chaotic solutions as 
steering flows, we identified two-types of track errors, 
including Ivan (2004)-type and Sandy (2012)-type, whose 
movements were impacted by a spiral source (as a 
subtropical ridge) and a saddle point, respectively. The 
former should be more predictable.  

 We additionally discussed differences surrounding 
instability, chaos, and computational chaos, and 
illustrated the saturation dependence on various types of 
solutions. While saturated RMS errors may indicate either 
chaos or computational chaos, oscillatory RMS errors are 
likely associated with nonlinear oscillatory solutions. We 
finally provided a summary on the recent deployment of 
methods (e.g., PEEMD, RP, and K-PCA) for multiscale 
analyses and classifications of chaotic and non-chaotic 
solutions with the aim of identifying systems with better 
predictability.   
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