2021年6月4日台灣北部天氣豪大雨個案分析

徐天佑¹何台華¹朱炯光²侯昭平³薛皓薫² ¹龍華科技大學²空軍氣象聯隊³國防大學理工學院

摘要

2021年6月4日午後台北地區降下豪大雨,尤其台灣大學測站當日降雨量多 達364mm,其餘各測站超過200mm甚多。6月4日當日天氣系統在台灣北部沿海 有梅雨鋒面系統,台灣西南沿海有彩雲颱風,綜觀系統有利局部地區中小尺度天氣 系統的發展,也因颱風外圍環流提供有利的水氣通量;再者,鋒面系統有利鋒前局 部不穩定天氣現象的產生,致使台灣北部地區降下豪大雨。本研究利用地面觀測資 料、衛星觀測資料、雷達觀測資料進行分析,探討形成台灣北部大雷雨的物理機制 及其可能的發展過程。初步結果發現,地面風場的輻合效應為有利台灣北部形成兩 波中尺度天氣系統的主要原因,促使其一之中尺度系統在新竹地區發展,另一在台 北市西南端及鄰近的新北市發展。

關鍵字:中尺度天氣系統、梅雨鋒、輻合效應

Analysis on the Heavy Rainfall Case in Northern Taiwan Area on 4 June 2021

Abstract

In the afternoon of 4 June 2021, a heavy rainfall event occurred in the Taipei municipal area. The daily accumulated precipitation at Taiwan University Station was as high as 364 mm, and several monitoring stations nearby were over 200 mm. A Mei-yu front was observed at the north shore of Taiwan, and the TS Choi-wan was off the southwest coastline of Taiwan on June 4th. The condition was favorable for developing local weather systems since the outer periphery of the tropical storm provided sufficient water vapor fluxes. In addition, the Mei-yu front likely induced local weather instability in the fore area of the front, which caused heavy rainfall in northern Taiwan. This study tried to explore the physical mechanisms and related possible development processes using ground, satellite, and radar observations. The preliminary results found that the confluent effect of the surface wind field was beneficial to the formation of two mesoscale weather systems in northern Taiwan. The first one was initiated in the Hsin-chu area, and the other was developed in the southwestern tip of Taipei City and the adjacent area of New Taipei City.

Keywords : mesoscale weather system, Mei-Yu front, confluent effect.

一、前言

2020年由於梅雨系統結構不完整不強, 以及颱風中心未曾登陸台灣,僅閃電颱風中 心11月初通過巴士海峽,未對台灣地區帶來 大量雨水,致使台灣地區水庫缺水。2021年 6月4日,綜觀天氣系統型態,在台灣北部近 海有梅雨鋒面,台灣東南沿海有彩雲颱風如 圖1所示,有利局部地區的中尺度發展,大 台北地區在午後普遍降下豪大雨,6月11日 另一波鋒面通過台灣,帶來強烈降雨,台灣 地區旱象稍解,本研究針對6月4日北部地 區豪大雨的個案加以分析研究,探討產生豪 大雨的機制。

二、天氣現象分析

2020年的乾旱現象一直持續至2021年,

尤其導致中部地區台中彰化自來水供應,不 得已供5停2,造成民生用水不便,乾旱延續 到2021年6月份,因三波梅雨鋒面過境台 灣,暫時使得水庫缺水得以緩解。當第一波 梅雨鋒面6月4日08L(UTC+8)滯留台灣北 部海面,而在台灣西南沿海有彩雲颱風向台 灣南部接近,颱風外圍環流帶來豐沛西南氣 流所伴隨的水氣平流,如圖2之850hPa水氣 平流所示,而由衛星雲圖顯示(圖3),鋒面與 颱風形成不同發展的雲系,但提供台灣北部 午後雷雨的機制。

颱風外圍水氣平流以及梅雨鋒面的鋒前不穩 定,尤其面前西南氣流有利台灣北部地區中 小尺度天氣系統的發展(卓盈旻、盧孟明, 2013),致使午後台灣北部局部地區下豪大雨, 台大測站降雨紀錄達 364mm,其餘各測站超 過 200mm 者甚多。

圖 4 為地面測站逐時降雨分布圖,降雨 區移動從文山區移向大安區,後信義區有一 波發展,逐時最大雨量都超過 60mm,強降雨 發生時間都在地方時 12 時以後,而且強將降 雨時間都集中在一至兩小時之內,之後則斷 斷續續地降雨,是夏季午後降雨的型態。圖 5 為 2021 年 6 月 4 日台灣北部地區總雨量圖, 降雨量超過 200mm 地區範圍甚廣。

圖 6 為中央大學風剖儀 6 月 4 日 1200L 至 1800L 風場變化,底層風場 100 公尺自 1200L 從偏西風至 1500L 轉成北北西風,至 1530L 轉變為北風、1550L 開始轉為北北東 風。過後至 1600L 轉成東風,顯示底層有系 統經過。

三、中尺度系統誘發機制與探討

從天氣圖與衛星雲圖顯示,降雨非直接 受鋒面或颱風影響,而降時間由午後雷雨系 統所造成。因此本文再由地面風場地、地面 降水、雷達、探空等資料,進一步探討此次中 小尺度短延時降雨的原因。圖7為2021年6 月4日08L(UTC+8)200hPa 風場分布圖,台 灣地區位於高層噴流入區的右後方,圖8為 6 月 4 日 00UTC 板橋探空,圖中顯示 850~500hPa 有中低空有噴流,皆有利局部環 流的發展(Shapio,1982)。

圖 9 為 2021 年 6 月 4 日 08L(UTC+8) 200hpa 氣流線分布圖,台灣地區正好位於高 空輻散區,圖 10 為 2021 年 6 月 4 日 08L(UTC+8) 700hpa 氣流線分布圖,台灣地 區也位於低空輻合區,因此在台灣地區高層 有輻散,低層有輻合,有利中尺度系統發展 (曾德晉、劉清煌,2016),致使午後有強烈雷 雨天氣系統的成長。

四、降雨過程分析

圖 11 為 2021 年 6 月 4 日 1210L 的:(a) 雷達垂直剖面,剖面由桃園經新北市及台北 市南端至基隆,(b)雷達回波,(c)降雨量,雷 達垂直剖面兩波分別在新竹及台北西南至新 北市兩波發展如圖 10(a),地面風場由淡水河 的北風與基隆河的東北東風再加上颱風外圍 西南氣流,在台北西南端的新北市形成輻合 效應如圖 10(b),降雨則由台北市西南端的新 北市開始發展,逐漸在地面形成強烈雷雨天 氣現象如圖 10(c)。

2021年6月4日1250L剖面雷達波在新 竹降雨系統分裂為二系統(圖12a),台北及新 北也發展成兩系統(圖12b),分別在新竹及台 北及新北產生升降雨(圖12c)。

2021年6月4日1330L兩波系統發展擴 大增強如圖13(a),由新竹地區向桃園發展, 新北台北系統分別向基隆及向東發展如圖 13(b),造成桃園新竹地區、台北新北及基隆 地區降雨如圖13(3c)。

2021 年 6 月 4 日 1400 時新竹地區系統 向東北移動至桃園地區,新北及台北市的系 統範圍加強擴大且與新竹系統相連接如圖 14(a),台北市雷達回波超過 12 公里,強回波 系統開始移出台灣本島如圖 14(b),整個強降 雨範圍也逐漸加大如圖 14(c)。

2021 年 6 月 4 日 1600 時整個系統都逐 漸減弱,回波高度降低如圖 15(a),強雷達回 波繼續向東北東移動,也逐漸消散減弱如圖 15(b),降雨強度隨之減弱,但降雨範圍加大, 幾乎涵蓋整個北台灣如圖 15(c)。1600 時之後 降雨則逐漸消散減弱。

五、結論

2021年6月4日台灣北部處鋒面前緣, 又受颱風外圍水氣的影響,由於高層輻散低 層輻合,且位於高層噴流右後方再加上地面 風場輻合,而有利降水系統的發展。

參考文獻

曾德晉、劉清煌,2016:2016年6月2日
短延時極端降雨個案分析。氣象預報與分析,228期,17-30。
卓盈旻、盧孟明,2013:台灣梅雨季極端降
兩大尺度環流指數研究。中央氣象局天氣分
析與預報研討會,92-96。
Shapio, M.A., 1982: Mesoscale Weather
System of the Central United States. CRIES,
Univ. of C./NOAA, Boulder, Col

圖 1.2021 年 6 月 4 日 08L(UTC+8)地面天氣圖。

圖 3.2021 年 6 月 4 日 08L 衛星雲圖。

圖 6. 國立中央大學剖風儀 2021 年 6 月 4 日 1200L 至 1800L 風場變化。

圖 7.2021 年 6 月 4 日 00UTC 200hPa 風場。

圖 9.2021 年 6 月 4 日 08L 之 200hPa 氣流線。圖 10.2021 年 6 月 4 日 08L 之 700hPa 氣流線。

(b) 圖 15. 同圖 11,時間 2021 年 6 月 4 日 1600L。

(a)

(c)