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Abstract 

 
     In Taiwan, the precipitation associated with frontal system not only serves as one of the major water 

resource in Taiwan but also the cause of natural disasters. Chang et al. (2019) performed three different 

objective methods to detect the frontal system in all seasons in Taiwan region. The first one is the traditional 

objective diagnostic method based on the spatial variability of thermal parameters, it can provide the 

intensity and position of frontal system while diagnosing. Its hit rate was low (10-20 %) as it missed most 

of the frontal systems that passed through Taiwan, while the false alarm rate was very low as well. The 

second method be applied is the self-organizing map (SOM)-based classifier. SOM is an unsupervised 

machine learning method that groups the patterns with similar characteristics into clusters. The SOM-based 

method had much higher hit rate (70-80 %) than the traditional objective methods, however, the false alarm 

rate was also high (20-60 %) between different seasons, which indicated that SOM over-diagnosed the 

pattern s of frontal systems. The third method is the machine learning-based diagnostic tool. The hit rate of 

machine learning-based method was approximately 60-70% while its false alarm rate was only 20-30 %. 

Moreover, both the linear and non-linear kernel were tested and showed that the long-term statistical 

properties of the front frequency can be well represented. 

     In this study, we applied the machine learning-based diagnostic method to select CMIP6 model datasets 

for future climate projection and to investigate the long-term statistical properties of frontal systems near 

Taiwan. The preliminary findings are that the derived results can be affected by model features, therefore 

the original data were replaced by the climatological anomalies to eliminate the difference among models. 

Key word: frontal system, objective classifier, machine learning method, climate projection. 

*Corresponding author: Shih-Hao Su, ssh3@g.pccu.edu.tw 

 

 

1. Introduction 

 
    The precipitation associated with the fronts not only 

serves as the major water resource but also the cause of 

floods in Taiwan. Therefore, the prediction of the front 

system is a crucial issue in the management of water 

resources and flood protection. The subjective 

diagnostic analysis is one of the major methods for the 

prediction. However, it is time-consuming, and the 

subjective biases cannot be amended systematically. 

Objective diagnostic methods were developed in the 

early1960s. The spatial gradient of the thermodynamic 

parameters was used as the tracker of the front system. 

(e.g., Renard et al., 1965; Clark et al., 1966; Steinacker, 

1992). Hewson (1998) indicated that merely using the 

thermal or dynamical variables would cause bias on the 

identification of the fronts. Hence it is essential to 

enhance the prediction skill by adding the threshold. 

Nevertheless, the setting of the threshold value could 

also lead to subjective biases. 

    Benefit from advances in computer science and the 

statistical methods; the clustering analysis was also 

applied to classify the varied types of weather patterns 

since clustering algorithms advances in resolving the 

non-linear problems. The self-organizing map (SOM) 

proposed by Kohonen (1982) is a clustering algorithm 

based on artificial neural networks (ANNs) and was 

taken as the diagnostic tool for the synoptic weather 

patterns associated with the Mei-Yu/Baiu fronts. (e.g., 

Nguyen et al., 2017) In more recent years, benefitting 

from the thriving development in the field of data 

science, the machine learning techniques are showing us 

a new path in the detection of weather systems (Su et al. 

2018). In this study, following the work of Chang et al. 

(2019), we are introducing the traditional objective 

diagnostic method, SOM, and machine learning-based 

diagnostic tools for the identification of the fronts 

affecting Taiwan and further explore the potential of the 

machine learning methods in for future climate 

projection. The data and methodology we sued are 

introduced in section 2, and the results are presented in 

section 3. The summary and the future work are 

discussed in section 4. 

 

2. Data and Methodology 

 
The record of the front events over 1980-2016 was 

acquired from Taiwan Atmospheric event Database 

(TAD) (Su et al. 2018). The front events in TAD were 

mailto:ssh3@g.pccu.edu.tw


2 

 

identified with the subjective analysis of the surface 

weather map launched by CWB at 00Z on a daily basis. 

  The National Centers for Environmental Prediction 

(NCEP) Climate Forecast System Reanalysis (CFSR) 

datasets (Saha et al., 2010; Saha et al., 2014) from 2001 

to 2016 were utilized for the objective analysis and the 

training of the models. The CFSR reanalysis datasets 

provide detailed information of high temporal (6h) and 

spatial (0.5⁰×0.5⁰) resolution. The variables we selected 

are listed in table 1, including 500 hPa geopotential 

height (HGT), mean sea level pressure (MSLP), the 

zonal wind (U), the meridional wind (V), relative 

humidity (RH), and temperature (T) on 925 hPa, 850 

hPa, and 700 hPa.  

In this study, we proposed three objective diagnostic 

tools to identify the front systems over 2011-2016 and 

evaluated the performance of each method.  

 

2.1 Frontal thermal parameter (TFP) diagnostic tool 

 

This tool took the TFP in the lower atmosphere as the 

indicator of the frontal system affecting Taiwan. The 

earlier study used the gradient of the wet-bulb 

equivalent potential temperature (θw) to track the frontal 

line (Hope et al., 2014). However, the gradient of the θw 

is insignificant near Taiwan, since the average relative 

humidity near Taiwan is generally higher than 75 % 

even under the influence of global warming (Su et al., 

2012) and hence the cooling effect of evaporation is 

limited. On the other hand, the equivalent potential 

temperature (θe) can quantities the variations in both 

temperature and the effect of the latent heat of 

evaporation, which is more representative of the 

atmospheric environment in the Taiwan area. Here we 

used the gradient of the equivalent potential temperature 

(∇θe) on 925 hPa in replace of θw and multiply it with 

the precipitation rate (∇θe×PR) as the TFP to detect the 

potential frontal systems and remove the non-

precipitation ones. Only the data points with its height 

exceed 750 m were kept; as a result, the geographical 

compensation was performed to fill the filtered data. 

Moreover, to eliminate the weak systems, we analyzed 

the cumulative distribution function (CDF) of ∇𝜃𝑒 × PR̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(unit: 10∙K∙kg/km∙s) of each candidate and set 200 

(10∙K∙kg/km∙s) as the threshold value. The operational 

flow is summarized in figure 1 (adapted from Chang et 

al, 2019). 

 

2.2 Self-organized map (SOM)-based diagnostic tool 

 

  The SOM is a non-linear algorithm for clustering and 

classification. The SOM is a single-layer neural 

network, and the training of the SOM model is based on 

unsupervised learning by moving its prototype to fit the 

data according to the distribution of the input data. (Sá 

et al., 2012) From the earlier study, we have noticed that 

the features of the frontal systems affecting Taiwan are 

distinct from those in the mid-latitudes. (e.g., Ninomiya 

et al., 2007) In this study, we utilized the SOM as an 

objective strategy to classify the typical patterns of the 

fronts affecting Taiwan by taking the long-term data in 

May and June (MJ) from 1980 to 2016 as the inputs. We 

selected U, V, T, and RH on 850 hPa, the variables that 

can describe the most significant features of the Mei-Yu 

front. (Ninomiya et al., 2007) To reduce the data size 

and enhance the computational efficiency, EOF is 

applied for all the input variables, and the modes that 

can explain 90 % of total variance were kept as the input 

feature set. 

 

2.3 The machine learning-based diagnostic tool 

 

  The machine learning-based diagnostic tool (ML) was 

designed on the basis of a supervised learning strategy. 

The structure of the ML consists of the training stage 

and the application stage. In the training stage, the 

binomial label (true or false) of whether the frontal 

events occur and the corresponding atmospheric 

features are essential for the ML model learns the 

mathematical relationship classification and the data 

features, and establish the classification model for the 

frontal systems. We combined the frontal event data 

logs and the CFSR 6-hourly reanalysis data from 2010 

to 2010 to establish a golden standard as the training 

datasets. The variables we selected contained the 

dynamical and thermodynamical fields on the standard 

levels and were summarized in detail in table 1. Also, 

we applied PCA in the data pre-processing to reduce the 

dimension of the data and retained the first 20 modes as 

the inputs. For the classification algorithm, we applied 

the Support Vector Machine (SVM) (Chang et al., 2001) 

with a polynomial kernel as the primary pattern 

classifier. The SVM has been widely used in the field of 

data science. It projects the inputs data to high-

dimensional feature space and acquires a hyperplane in 

the space that can separate the “true or false” conditions. 

We also applied the general linear model (GLM) as a 

baseline of the classification results. 

 

2.4 Model evaluation 

 

  The performance of the three objective analysis 

methods was evaluated by the confusion matrix 

(Fawcett, 2006). The difference between the predicted 

event and the actual event can be categorized into True 

positive (TP or hits), False positive (FP or false alarm), 

False negative (FN or missing), and True negative (TN). 

From the confusion matrix, the accuracy, the hit rate, the 

false alarm rate, and F1 score can be evaluated by the 

formulas below: 

    Accuracy = (TP + TN)/(TP + FP + FN + TN) 

    Hit rate =  TP/(TP + FN) 

    False alarm rate = FP/(FP + TN) 

    F1 score = 2×TP/(2×TP+FP+FN) 

The scores of the models are demonstrated in the next 

section. 

 

3. Results 

 

3.1 TFP diagnostic tool 

 

    If ∇θe was used as the tracker of the fronts, the hit 

rates in DJF, MA, and MJ (Mei-Yu) would be 0.16, 

0.16, and 0.09, and the false alarm rate would be 0.18, 
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0.15, and 0.05, respectively. This suggested that ∇θe is 

more sensitive to the frontal systems in winter and 

spring seasons while it did not have the skill to diagnose 

the Mei-Yu front since the temperature gradient is more 

potent in winter and spring seasons than in the Mei-Yu 

season. Replacing ∇θe with ∇θe
 
× PR, the hit rate in DJF, 

MA, and MJ were 0.15, 0.21, and 0.29, and the false 

alarm rates were 0.14, 0.10, and 0.12, respectively. 

(Summarized in figure 1) The systems with no 

precipitation would be discarded if PR=0, as a result, the 

hit rate in MA and MJ seasons increased, since the 

frontal rainfall is significant in these seasons. However, 

the hit rate in DJF descended slightly due to the 

precipitation associated with the fronts is weaker in the 

season. Note that the false alarm rate in both DFJ and 

MA decreased while it increased in the Mei-Yu season 

as some linear systems with weak precipitation would 

be recognized as fronts. Besides PR, we applied the 

threshold value to eliminate the candidates with weak 

precipitation in a similar way to Hewson (1998), and 

there was a loss of 31.5 % of the hitting events in DJF 

while 79.5 % of the false alarms were improved; in MA, 

the loss in hitting events was 25.8 %, and 68.2 % of the 

false alarms were improved; In MJ, the loss in hitting 

events was 8.6 %, and 28.6 % of the false alarms were 

improved. Overall, ∇θe
 

× PR with the use of the 

threshold value can reduce the false alarm rate in the 

detection of the front systems. 

 

3.2 SOM diagnostic tool 

 

    The hit rates of SOM in DJF, MA, and MJ (Mei-Yu) 

were 0.85, 0.92, and 0.79, and the false alarm rates were 

0.20, 0.5,9 and 0.46, respectively. (Summarized in 

figure 1) The clusters of the weather pattern feathers in 

MJ classified by SOM is shown in figure 2. The weather 

pattern in MJ can be classified into nine types. When the 

Mei-Yu fronts influenced Taiwan, there is a warm 

tongue pointing to Taiwan on 850 hPa θe. (figure 1a). 

On the other hand, there is a significant convergence 

zone above Taiwan. (figure 1b) These results suggested 

that SOM was capable of detecting the front systems in 

all seasons. Yet, the false alarm rates were higher than 

that of the TFP methods due to the loose criterion of the 

clustering analysis. Among all the seasons, the false 

alarm rate in MA was the highest. In MA, the front-like 

rainbands over the southern China area that moved 

eastward to Taiwan were attributable to such a bias. 

Nevertheless, in terms of the F1-score, the skill in the 

Mei-Yu season, which scored 0.6 outperformed the skill 

in DJF (F1-score = 0.52) and MA (F1-score = 0.45). 

    In this study, we used the identical variables for the 

detection of the fronts in each season due to the limited 

computational resources. Nevertheless, the previous 

studies had shown that there were distinctive differences 

in the features of the synoptic-scale environment. It 

would reduce the false alarm rate by using the 

representative variables which best describe the 

seasonal features of the atmospheric environments as 

the inputs.  

 

3.3 Machine learning-based (ML-based) diagnostic 

tool 

 
   The label of the front events and CFSR reanalysis data 

from 2001 to 2010 was used as the training dataset and 

trained the model on the basis of both GLM and SVM. 

In the training process, the training dataset was split into 

ten equal portions; the model was trained with 90 % of 

the dataset and validated with the other 10 %. In the 

training process, the cross-validation was repeated until 

the model converged. We applied the model to the 

identification of the front events through 2011-2016; the 

hit rate of GLM (SVM) in DJF, MA, and MJ were 0.61 

(0.65), 0.71 (0.70), and 0.69 (0.71). The false alarm rate 

of GLM (SVM) in DJF, MA and MJ were 0.15 (0.17), 

0.26 (0.26) and 0.22 (0.28) (figure 2). Overall, the ML-

based diagnostic tool outperformed the TFP and the 

SOM in terms of both the hit rate and false alarm rate. 

The identified and observed frontal days were 

summarized in figure 4. The correlation coefficient of 

the historical and GLM-identified frontal days was 0.8, 

while that of SVM was 0.74 due to its higher false alarm 

rate. The results suggested that there were some biases 

between the identified conditions and the true 

conditions. We further examined the bias between the 

hit events and the false alarm events (figure 5). In 

winter, the bias of GLM displayed a band of a positive 

anomaly in 850 hPa temperature with a strong zonal 

temperature gradient and 850 hPa specific humidity 

extending from Japan to Taiwan (figure 6). The bias 

pattern of GLM in MA was similar to DJF, while in MJ, 

the GLM tended to identify the environment with 

stronger cold air north to Taiwan and the moist 

condition near Taiwan. The bias patterns of SVM were 

similar to GLM, except the 850 hPa temperature showed 

a band of positive anomaly similar to the patterns in DJF 

and MA. These results indicated that the ML-based 

diagnostic tool tends to identify the systems with the 

structure similar to the mid-latitude baroclinic fronts as 

the front events. Similar to the SOM, the ML-based 

diagnostic tool follows the principle of subjective 

analyses while it allows exceptions. 

 

4. Summary and future works 

 
    In this study, we have tested three objective 

diagnostic tools to identify the front systems affecting 

Taiwan. The TFP method based-on the spatial variations 

of the thermodynamic parameters was the most 

ineffective one among these methods we have tested, 

which is attributable to the weak gradients of the 

thermodynamic parameters near Taiwan that led to the 

low sensitivity of the tool. However, the TFP method 

could provide the position and the intensity of the frontal 

system in the analytic process. The SOM was 

established on the basis of the clustering algorithm, and 

it clustered the inputs data into groups depending on the 

similarity of the features. It not only identified the 

targets but also classified the varied types of the front 

systems. For the ML-based tool, both the GLM and the 

SVM algorithm can not only identify the typical frontal 
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systems but also effectively diagnose the long-term 

variations of the occurrence frequency of the front. 

    For the future work, we are attempting to apply the 

ML-based weather classifier on the front systems under 

the future climate scenario by analyzing the CMIP6 

model output. Currently, we are selecting the models by 

analyzing the similarities between the historical 

simulations and the reanalysis datasets via hierarchical 

clustering. To standardize the effects of model 

properties, the climatology anomalies were used as 

inputs to identify the weather events. For further study, 

the ML-based weather classifier will be applied to 

estimate the changes and the variations in frontal 

precipitation and properties under difference climate 

change scenarios. 
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Table 1. The input NCEP-CFSR variables of the objective diagnostic tool. (The variables used are marked by “x”.) 

Figure 1. The work flow of TFP front identification. (a) calculating ∇θe, ∇θe×PR and max(TFP), (b) operating the 

geographical compensation, (c) the target front line filtered by the threshold value. (Adapted from Chang et al., 2019) 

Search for the max(TFP) along each 

longitude 

Geographical compensation: to link the 
nearest points within 200 km from west to 

east of each max(TFP) points 

Filter out the averaged max(TFP) that 

does not reach the threshold 

Check if the length of the system 

exceeds 500 km 

Label the frontal line and record the 
frontal event following the principle of 

the subjective analysis. 

Geographical compensation: to link the 
nearest points within 400 km from south to 

north of each max(TFP) points 
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Figure 2. Relative Operating Characteristic (ROC) plot. The solid dots are the scores of the TFP diagnostic tool, the 

triangles represent the SOM, the diamonds and “X” represent the GLM and SVM, respectively. DJF, MA and 

MJ are colored by black, blue and red, respectively. The diagonal lines mark the diagnostic skill, the shaded 

mean “No skill”. (Adapted from Chang et al., 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The clustering of the Mei-Yu fronts by SOM. (a) 850 hPa θe (units: K), (b) 850 hPa divergence field (units: s-

1). C1-C5 represents the primary configuration of Mei-Yu fronts. (Adapted from Chang et al., 2019) 
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Figure 4. The number of frontal events in 2011-2016 analyzed by ML-based diagnostic tool. The black line denotes the 

number of frontal events observed by Central Weather Bureau, the blue and red bars are the number of the events 

identified by GLM and SLM. In this analysis, the frontal days is recognized as long as one of the 6-hourly surface 

weather maps or the ML-tool report the front system. The average (standard deviation) recognized by the observation 

and the ML models are 79 (16.3), 88.5 (18.4) and 98.3 (14.3) days. (Adapted from Chang et al., 2019) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The temperature bias on 850 hPa. From the left to the right are DJF, MA and MJ. (a), (c), (e) are the temperature 

bias diagnosed by GLM and (b)、(d)、(e) are the temperature bias diagnosed by SVM. (units: K) (Adapted from Chang 

et al., 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The specific humidity bias on 850 hPa. From the left to the right are DJF, MA and MJ. (a), (c), (e) are the 

temperature bias diagnosed by GLM and (b)、(d)、(e) are the  specific humidity bias diagnosed by SVM. (units: g kg-1) 

(Adapted from Chang et al., 2019) 


