日射量對太陽能電廠發電的影響

楊智堯1 謝宜桓2

索拉能源股份有限公司1國立臺灣大學氣候變遷與永續發展國際學位學程2

摘要

氣候變遷的議題日漸受到重視,自 2009 年再生能源發展條例通過後,台灣的再生能源占比 也逐年增加,尤其太陽能在近幾年發展特別迅速。今年在夏季尖峰用電期間,根據台電的公開 資訊,太陽能的發電占比,甚至可以達全台發電的 5%以上。而太陽能的發電多寡,與太陽的日 射量息息相關。本研究將介紹本團隊利用向日葵8號衛星反演日射量計算太陽能電廠的發電量; 並分析 2020 年 6 月 21 日台灣難得一見的日環食天文事件,進行此計算方法之驗證。

根據台北市立天文館的資訊顯示,此次日環食天文事件,台灣本島自下午4點13分至4點 15分食甚期間,遮蔽率從北到南最高超過90%,大幅影響地表的日射量,進而影響太陽能的發 電量。自索拉能源所管理的46個太陽能案場、每10分鐘一筆的發電量顯示,食甚附近地點的 發電量減少約95%。雖然未來短期之內台灣不易觀測到日全食、日環食的事件,(下次台灣地區 之日偏食發生的時間是2023年4月20日,最大食分約0.15),但根據此事件之驗證,有助於了 解目前發電量計算方法之限制,並有助於討論相關影響太陽能發電量之事件及其特性。

關鍵字:日射量、太陽能、日食

一、前言

台灣自 2009 年通過再生能源發展條例之後, 開始建立、實施了躉購制度(Feed-In Tariff, 簡稱 FIT)於台灣之再生能源市場,也使得再生能源的投 資或使用中財務的成本方面,能有明確的評估跟預 期。目前因太陽能的基本技術門檻較低,環境爭議 較少,在台灣之再生能源市場中佔大宗;根據台灣 電力公司統計至 2019 年底的公開資訊,台灣的電 力系統裝置容量是 4777.9 萬瓩,總發電度數為 2324.7 億度。而太陽能裝置容量約占 359.8 萬瓩, 發電度數為 39.62 億度,與 2018 年的 26.55 億度相 比,大幅成長了 50%左右,而這趨勢也還在持續當 中。

而根據本公司營運資料顯示,近年安裝太陽 能發電除源自 FIT 制度下之財務誘因外,對屋頂型 之雞舍、鴨舍或工廠廠房,甚至因為安裝太陽能板, 達到額外降溫的效果。因此使得目前推動太陽能發 電之阻礙降低;而除了企業參與外,也有很多公民 電廠的發起,讓一般民眾也能一同參與再生能源的 投資及發展。也因此,除太陽能發電之硬體建設外, 服務也將成為此產業中重要之一環。

太陽能的發電多寡,主要受日照的影響最多, 溫度、風速及落塵等則為次要因素。大型的太陽能 案場,大多會在當地安裝日照計,方便維運管理。 然而日照計也一樣會受落塵的影響,且不見得每一 個案場之規模皆能設置日照計。因此本研究參考鄭 等(2017)使用日本向日葵8號同步衛星反演日射量 資料進行輔助,建立日射量與太陽能發電量間之換 算系統,除能協助在小型案場之維運外,未來在儀 器(日照計)異常的情況下,此系統可以當作備援或 協助維運之其他用途。

而本研究除介紹此系統之建立流程外,並以 台灣於 2020 年 6 月 21 日發生之日環食天文事件 作為驗證討論對象。本次日環食事件,主要的環食 帶經過雲林、嘉義、台南等太陽能裝置較多的縣市, 其他縣市也有受日偏食影響,因此在資料上可說是 個難得一見的個案。在現行制度之下,此事件主要 影響的是台電的調度方面,但在未來在電業自由化, 甚至電價自由化之後,對於這樣特殊事件的應變, 將會是各別再生能源廠商重要業務之一。

二、資料來源及演算法

(一)、衛星資料

Himawari-8向日葵8號衛星,為西北太平洋 地區重要的地球同步衛星,由日本所發射,位於赤 道、東經140.7度,衛星軌道距地面約35800公里。 衛星資料來源為千葉大學研究資料庫,除定期排程 及衛星食等特別事件之外,時間解析度約10分鐘 左右,水平空間解析度部分,可見光波段(0.64µm) 約0.5公里,紅外線波段(10.4µm及12.3µm)約2公 里。將千葉大學之原始檔案處理後,參考鄭等(2017) 之方法進行日射量進行反演,水平空間解析度約 0.5公里。自衛星資料反演成日射量資訊,需考慮 天文因素及大氣因素後進行計算。

1. 天文因素

天文因素主要受太陽入射角度之影響,因地 球自轉平面與繞太陽公轉之平面並非平行,且公轉 軌道為橢圓形,故產生太陽赤緯角。根據 Cooper(1969)之太陽赤緯角δ之定義:

 $\delta = 23.45^{\circ} \cdot \sin[360/365 \cdot (J + 284)]$

J:太陽日,1月1日為1;非閏年之12月 31日為365。

得知太陽赤緯角後,可對太陽天頂角進行計 算。太陽天頂角為太陽與天頂之夾角,與仰角相 加為 90 度。天頂角θ之餘弦值為:

 $\cos \theta = \sin \delta \sin \phi \cos \beta - \sin \delta \cos \phi \sin \beta \cos \gamma$

- + cosδcosφcosβcosω
- $+\cos\delta\sin\phi\sin\beta\cos\gamma\cos\omega$
- $+\cos\delta\sin\beta\sin\gamma\sin\omega$

其中為 φ 地理緯度, β 為傾角, γ 為方位角, ω 為時角。由於氣象觀測為水平面,故傾角為零, 使 $\cos\beta=1$, $\sin\beta=0$ 。 $\oint \cos \theta = \sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega$

2. 大氣因素

太陽輻射自太空穿越大氣層時,受水氣、臭 氧、懸浮微粒、雲及其他氣體吸收或散射作用影響, 能直接到達地表的為直接日射量,其餘的為散射日 射量。

(1). 直接日射量:

Sdir = I cos $\theta \alpha_0 \alpha_r \alpha_w \alpha_a$

(2). 散射日射量:

Sifr = I cos $\theta \alpha_o (1 - \alpha_r) 0.5 \alpha_a$

Sifa = I cos $\theta \alpha_o \alpha_r \alpha_w (1 - \alpha_a) F_c \omega_0$

I:太陽常數

α_o:臭氧穿透率

α_r: 雷利散射穿透率

αw:水氣穿透率

α_a:懸浮微粒穿透率

- F_c :懸浮微粒散射量占全部散射量之比例
- ω_0 :單次散射反照率

3. 雲層影響

將日射量分為有雲及晴空狀態計算。參考 Tanahashi (2000,2001)之定義:當太陽天頂角小於 50度,且返照率小於 0.15時為晴空,反之為有雲 狀態。有雲狀態時,需利用可見光、紅外線波 段,計算返照率及衰減係數,而後得到有雲時的 日射量。將其計算方式方為兩類:

(1). 晴空:Sdir+Sifr+Sifa

- (2). 有雲:(Sdir + Sifr + Sifa)(1 r・
 - A)

r:太陽日射衰減係數

A:可見光波段接受之反照率

(二)、電廠資料

實際發電資料來自索拉能源股份有限公司所 管理的太陽能電廠,資料時間解析度為5分鐘一 筆,監控資料可用於了解電廠發電狀況,作為拿 到實際電費收入前的預估資訊。本此研究使用的 電廠監控資料,裝置容量規模約為8MW,共46 個案場。

三、衛星資料與測站及電廠比較

測站日射量資料來源為中央氣象局觀測資料查詢 系統 (CWB Observation Data Inquire System, CODIS),時間解析度為1小時,因此將衛星日射 量資料處理成一小時,並將其單位轉換成 MJ/m²後, 取台北、台中、台南、花蓮,作為北中南東的四個 比較點。分析 2017~2019 年的資料,排除衛星資料 庫於早上6點至傍晚6點有缺值,以及氣象測站儀 器校正及缺值資料後的每小時資料散佈圖。其結果 如圖1及表1所示,北中南東四個測站的相關係數 範圍約 0.91~0.97,台北測站及花蓮測站衛星反演 日射量較氣象局觀測值些微高估,台中測站及台南 測站則是些微低估。平均絕對誤差的數值上,台北 測站為 57.67W/m² (約 0.20MJ/m²),台中測站為 55.75W/m² (約 0.20MJ/m²), 台南測站為 52.91W/m²(約 0.19MJ/m²),花蓮測站為 80.55W/m² (約 0.29MJ/m²)。

表 1. 中央氣象局測站全天空日射量與衛星反演日 射量分析表,分別為測站站名、相關係數、平均絕 對誤差(Mean Absolute Error, MAE)、平均誤差 (Mean Error, ME)、均方根誤差(Root Mean Square Error, RMSE)。

站名	相關係數	MAE	ME	RMSE
梧棲	0.9739	0.159	0.014	0.242
新屋	0.9741	0.165	-0.031	0.248
新竹	0.9676	0.175	-0.009	0.259
基隆	0.9725	0.18	-0.055	0.263
永康	0.9671	0.176	-0.009	0.264
高雄	0.972	0.181	0.068	0.268
蘇澳	0.9658	0.181	0.044	0.273
嘉義	0.9678	0.19	0.072	0.275
臺南	0.9718	0.188	-0.088	0.277
大武	0.9719	0.195	-0.041	0.277
臺中	0.9654	0.19	-0.072	0.283
臺東	0.966	0.199	-0.013	0.283
臺北	0.954	0.198	0.056	0.294
成功	0.9585	0.209	-0.001	0.307
宜蘭	0.9546	0.216	-0.039	0.322

板橋	0.9407	0.209	0.031	0.335
鞍部	0.9336	0.222	0.094	0.339
竹子湖	0.9415	0.235	-0.03	0.349
蘭嶼	0.9392	0.245	-0.029	0.363
恆春	0.929	0.238	0.063	0.378
淡水	0.9187	0.246	0.104	0.415
阿里山	0.8947	0.265	0.042	0.422
日月潭	0.9015	0.268	-0.014	0.427
花蓮	0.9144	0.286	0.011	0.433
王山	0.9246	0.363	-0.228	0.519

與局屬測站比較後,得知衛星反演日射量大 致上能掌握日射量多寡的趨勢,並且高度正相關。 為了與測站資料資料時間解析度一致,將5分鐘資 料轉換成小時資料,案場資料為一個位在雲林縣內 的屋頂型太陽能案場,散佈圖如圖2所示,黑色線 為100%轉換的輔助線,紅線為非線性的回歸式。 可知日射量轉換至太陽能的過程,為非線性過程, 隨著日射量逐漸增加,轉換至發電量的比例將因半 導體不同溫度的特性而逐漸降低。當我們了解這樣 的特性之後,可以利用其關係,將衛星反演日射量 做其他的應用。

四、日食當日實際發電資料

2020年6月21日台灣發生日食天文事件, 開始時間在下午2點50分左右,結束時間約為下 午5點25分,發電資料來自46個索拉能源所管理 的電廠監控資訊,每十分鐘一筆發電度數資訊。如 圖3顯示,黑色虛線為純晴空計算方式的發電量, 藍色實線為實際電廠整合後的監控發電數據,紅色 實線為衛星反演日射量,橘色虛線為經由日環食區 遮蔽率校正後的發電量。上午8點至下午3點前, 衛星反演日射量與發電量的趨勢大致符合,主要與 晴空的差異是來自於天氣因素的影響(如雲量、雲 頂溫度及降雨等)。2點50分後,日食開始初期, 由於太陽受月亮逐漸遮蔽,可見光波段的雲反照率 下降,在沒有校正的情況下,可見光反照率降低的 情況與雲量減少的效應雷同,將使原有計算結果逐 漸高估,直到逼近晴空的計算結果,需經過遮蔽率 修正,其結果才會接近真實狀況。由於案場並非皆 在環食區內,因此使用環食帶的遮蔽率會略微低估 發電量。但可從圖中的時序圖得知,衛星反演日射 亮經校正後,可以計算出合理的發電量情況。未來 的日食事件再度發生前,就先從天文的資訊做事前 的因應。

五、討論及結論

再生能源常被視為氣候調適的方法之一,但 隨著其裝置容量逐年增加,對於電網的穩定性影響 不容忽視。本研究使用了向日葵8號同步衛星的資 料,並參考鄭等(2017)的做法,計算出衛星反演日 射量。衛星反演日射量除了跟氣象測站有高度的相 關性之外,透過了解日射量與太陽能發電的關係後, 計算出在不同日射量之下,應有的太陽能發電狀況。 在2020年6月21日的日食天文事件中,發現衛星 反演日射量,在日食期間,因可見光波段受日食影 響反照率,導致其結果高估誤判,需特別考慮太陽 受月亮的遮蔽率,才能較合理的計算出該時間之日 射量,並利用其數值計算出日食過程的發電結果。

台灣目前再生能源大多採用躉購機制,以固 定費率販售給台電 20 年,但未來台灣若逐漸走向 電業自由化,供電將日趨多元,對於使用氣象資訊 應用在再生能源上,將逐漸有其價值,而本計算方 式未來則有助於在不同天氣事件下,快速估計各案 場應有的太陽能發電量。雖然日環食這樣特殊的事 件在短時間內,並不會再度發生,但下一次重要之 天文事件為:2023 年 4 月 20 日近中午,台灣地區 可見最大食分 0.15 左右的日偏食。屆時台灣的太 陽能總裝置容量勢必更高,因此此事件對於太陽能 發電甚至電網的影響,值得持續關注,並必須提前 做好相對應之技術研發。

參考文獻

鄭光浩、葉子嫈、胥立南、章鶴群與張育承 ,2017: 應用 Himawari-8 估計臺灣地表日射量之 校驗及探討,106 年天氣分析與預報研討會論文 全文彙編,中央氣象局,臺北市。 Cooper, P. I., 1969: "The absorption of solar radiation in solar stills", Solar Energy, 12, 333-346. Tanahashi, S., H. Kawamura, T. Takahashi, and H. Yusa, 2000: "Improved Estimates of Hourly

Insolation from GMS S-VISSR Data", Remote Sens. Environ., 74, 409-413.

Tanahashi, S., H. Kawamura, T. Takahashi, and H. Yusa, 2001: "A system to distribute satellite incident solar radiation in real-time", Remote Sens. Environ., 75, 412-422.

圖 1.衛星反演日射量(x 軸)與中央氣象局局屬測站日射量觀測資料(y 軸)散布圖。由左至右,由上至下,依序為 台北測站、台中測站、台南測站、花蓮測站。資料時間為 2017 年至 2019 年。

圖 2. 衛星反演日射量(x 軸)與實際每 kW 裝置容量之每小時發電量度數(y 軸)的散佈圖。黑色線為 100%轉換的 輔助線,紅線為非線性的回歸式。

圖 3. 2020 年 6 月 21 日日環食天文事件,實際發電監控數據及衛星反演日射量資料計算時序圖。藍線為索拉能 源管理之實際發電監控數據,紅色實線則使用衛星反演日射量,計算每 10 分鐘發電量,黑色虛線為假設晴空情 境後,衛星反演日射量再計算至每 10 分鐘發電量,橘色虛線為紅色線考慮日環食區域之遮蔽率後,校正日射量 後得到的結果。