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Abstract 

 Data quality assurance has been receiving increasing attention in the field of hydrology in the last 

decade. Only high-quality data ensures data-driven risk analysis and decision-making strategies of hydrol-

ogy applications. In Taiwan, the Central Weather Bureau manages an automated rain gauge network system 

of over 600 stations to obtain real-time precipitation observations. Occasionally, rainfall observations of 

one station are markedly higher or lower than those of nearby stations, suggesting the presence of anomalies 

because rainfall observations of neighboring stations are often highly correlated. To obtain reliable results 

based on hourly rainfall data, these anomalies should be identified in advance. However, there is a lack of 

definite criteria for effectively identifying anomalies.  

 In this study, we established an automated anomaly detection system for precipitation observations. 

First, we categorized the data into four groups according to the four fundamental storm types in Taiwan. 

Second, we adopted K-means clustering analysis to classify all rain gauge stations of interest by their geo-

graphical location and rainfall characteristics. For each cluster, PCA was conducted to acquire the first few 

principal components, aiming to construct an index representing the extent of anomalies. Once the criteria 

are determined, identifying anomalies is straightforward. Eventually, we established the detection system 

and presented it as an online interactive web page. Therefore, a dependable anomaly detection system was 

created for effectively screening out possible anomalies to achieve hourly rainfall data quality control. 

Keywords: Hourly Precipitation, Data Quality Control, Anomaly Detection, PCA, K-Means Clustering Analysis 

1. Introduction

Rainfall data are essential to agricultural farming, travel 
planning, and performing nearly all daily activities. The 
Central Weather Bureau (CWB) manages an automated 
rain gauge network system of over 600 stations to obtain 
real-time precipitation observations in Taiwan. Countless 
decisions required for livelihood activities rely on the anal-
yses of these rainfall observations. Accordingly, the quality 
of rainfall data is paramount, necessitating rainfall data 
quality assurance (QA) and rainfall data quality control 
(QC). Data QA investigates inconsistencies and anomalies 
in the original data. Data QC uses the information from the 
QA process to determine whether the data can be used for 
analysis or applications. QA approaches utilized in manu-
facturing have wide applications, including observation, 
data archiving, and processing and dissemination of envi-
ronmental information (Hudson et al., 1999). In the field of 
hydrology, data QA has been received increasing attention 
(You et al., 2007; Branisavljević et al., 2009). 

Occasionally, anomalies occur the hourly observa-
tions provided by rain gauge stations. For example, when 
a station fails to send the observations in time because of 

malfunctions, delays, or unknown reasons, the amount of 
delayed observation becomes exceptionally high because it 
has been accumulating for several hours. Moreover, the 
rainfall data returned by a station may be notably higher or 
lower than those reported by nearby stations, suggesting 
the presence of anomalies because the rainfall amounts of 
neighboring stations are often highly correlated. To guar-
antee the reliability of hourly rainfall data, these anomalies 
must be identified. However, no definite criteria exist for 
instantly and effectively discovering these anomalies, and 
manual identification would be inefficient and infeasible. 
Therefore, in this study, we established an automated 
anomaly detection system for hourly precipitation observa-
tions. Using this system, rainfall data QC can be accom-
plished in a cost-effective manner. 

Toe et al. (2017) conducted K-means cluster analysis 
and principal component analysis (PCA) to investigate the 
spatial and temporal variation patterns in the Central Dry 
Zone (CDZ) of Myanmar. They considered the influence 
of the climatological monsoon break on precipitation in the 
CDZ. Additionally, they divided the stations into different 
clusters to reveal the orographic effect and distinct climate 
dynamics. Their data revealed that the first and second 
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principal components (PCs) mainly accounted for the spa-
tial variabilities and seasonal (temporal) variation in aver-
age monthly precipitation in the CDZ, respectively. Before 
employing PCA, Toe et al. (2017) performed clustering to 
classify the original stations. Stations belonging to the 
same cluster possess similar rainfall characteristics. Fur-
thermore, the obtained PCs could fully capture both spatial 
and temporal variations in precipitation. 

In this study, we used statistical methods to generate 
the criteria for identifying anomalies. Because rainfall 
amounts are greatly affected by various rainfall character-
istics (Boyle & Chen, 1987; Chen et al., 1999; Chen & 
Chen, 2003), we grouped the stations of interest to identify 
anomalies. Inspired by the method of Toe et al. (2017), we 
conducted adopt K-means cluster analysis (Cox, 1957; 
Fisher, 1958) of the stations based on the features related 
to geographical locations and primary storm types in Tai-
wan (Wang & Cheng, 1982). Then, we performed PCA 
(Pearson, 1901; Hotelling, 1933; Jolliffe, 2002) for detect-
ing outliers. 

The rest of the paper is structured as follows. Section 
2 presents data collection and preprocessing. Section 3 il-
lustrates the methods used to identify nine categories of 
anomalies. The K-means clustering results and anomalies 
detected by PCA are presented and discussed in Section 4. 
Section 5 provides the conclusion. 

2. Data

The hourly rainfall data recorded by 297 rain gauge 
stations set up by the CWB are used because they provide 
consistent rainfall data of better quality. The unit of each 
hourly rainfall is millimeter per hour. Next, we web-
scraped the hourly rainfall data from January 1, 1998, to 
May 30, 2020, from the Central Weather Bureau Observa-
tion Data Inquire System (CODiS), which is an online open 
data platform that offers free observation data of CWB’s 
automatic weather stations.  

We then preprocessed the collected data according to 
the rainfall characteristics of Taiwan. Since rainfalls of Tai-
wan are readily affected by four main storm types of Tai-
wan: frontal rain, Meiyu, convective storms, and typhoons. 
The hourly rainfall data were divided into four groups ac-
cording to the rainy seasons of these storm types, as they 
have different rainfall characteristics.  

Table 1 presents the rainy seasons and duration of the 
four storm types. We easily separated frontal rain and 
Meiyu by their rainy seasons. However, both convective 
storms and typhoons tend to occur from July to October. To 
successfully distinguish the two events, we considered the 
duration of each rainfall event from July to October. Fur-
thermore, we referred to the list of warning typhoons from 
1998 to 2020 issued by the CWB. If the duration of a rain-
fall event exceeded 12 h and corresponded with a typhoon 
warning, hourly rainfalls of that event were classified as 
typhoons instead of convective storms. 
Table 1. 
Rainy Seasons and Duration for Four Storm Types 

Storm Type Rainy Season Duration 
Frontal Rain Nov. - Apr. > 1 h 

Meiyu May and June - 

Convective Storms July - Oct. 1 - 12 h 

Typhoons July - Oct. > 12 h 

3. Methods

3-1. Abnormal Situations 

When hourly rainfall data of a specific station are 
considerably lower or higher than those of neighboring sta-
tions, this may be an anomaly. Table 2 lists nine circum-
stances for a station in 1 day that may be abnormal and 
cause apparently different rainfall time series between a 
specific station and neighboring stations. 

Table 2.  
Codes Corresponding to Specific Circumstances for a Station in One Day 

Code Circumstance 
B1 OBS at some hours were higher than that of nearby stations 
B2 Observed trace; nearby stations, rainfalls 
B3 Did not observe OBS due to malfunctions 
B4 Did not observe OBS due to delays 
B5 Observed rainfalls; nearby stations, trace 
B6 Observed rainfalls; nearby stations did not due to malfunctions 
B7 Observed rainfalls; nearby stations did not due to delays 
B8 Delayed return of accumulated rainfall records  
B9 Rainfall trend was different from that of nearby stations 

Note.  
Trace = an amount of precipitation that is ≤ 0.1 millimeter; 
OBS = Observations. 

3-2. K-Means Clustering Analysis
The anomaly is the marked difference between rain-

fall data of a station from those of nearby stations. To ef-
fectively detect this type of anomaly, we employed the K-
means clustering method to classify 297 rain gauge stations 
because rainfall characteristics vary with diverse geo-
graphical location and storm type.  

The K-means clustering method partitions a data set 
into K distinct and non-overlapping clusters. Before clus-
tering, the desired K clusters need to be determined. Then, 
the algorithm allocates each observation to one of the K 
clusters. Assuming n observations in our data set, 
𝐶𝐶1,𝐶𝐶2, . . . ,𝐶𝐶𝐾𝐾 denotes sets that include the indices of ob-
servations in each cluster. The K-means clustering method 
aims to minimize the within-cluster variation among 𝐾𝐾 
clusters. The within-cluster variation of cluster 𝐶𝐶𝑘𝑘 is de-
noted as 𝑉𝑉(𝐶𝐶𝑘𝑘), which yields the following equation: 

min
𝐶𝐶1,…,𝐶𝐶𝑘𝑘

{∑ 𝑉𝑉𝐾𝐾
𝑘𝑘=1 (𝐶𝐶𝑘𝑘)} (1) 

Then, 𝑉𝑉(𝐶𝐶𝑘𝑘) is defined using the squared Euclidean dis-
tance. 

𝑉𝑉(𝐶𝐶𝑘𝑘) = 1
|𝐶𝐶𝑘𝑘|

∑ ∥ 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 ∥2𝑥𝑥𝑖𝑖∈𝐶𝐶𝑘𝑘  (2) 

where |𝐶𝐶𝑘𝑘| denotes the number of observations in the 𝑘𝑘th 
cluster, and 𝑥̅𝑥𝑘𝑘 is the mean of cluster 𝐶𝐶𝑘𝑘 (also called the 
cluster centroid). 

min
𝐶𝐶1,...,𝐶𝐶𝑘𝑘

{∑ 1
|𝐶𝐶𝑘𝑘|

𝐾𝐾
𝑘𝑘=1 ∑ ∥ 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 ∥2𝑥𝑥𝑖𝑖∈𝐶𝐶𝑘𝑘 } (3) 
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The algorithm work to solves Equation (3): 

I. Each observation is randomly allocated a number from 
1 to 𝐾𝐾, which serves as the initial cluster assignment.

II. Iterations occur until the alteration of assignments
stops:
A. The centroid 𝑥̅𝑥𝑘𝑘 is computed for each 𝐾𝐾 cluster

(i.e., the mean for the observations in cluster 𝐶𝐶𝑘𝑘).
B. Each observation is allocated to the cluster whose

centroid is the closest, as defined by the Euclidean
distance.

3-3. Principal Component Analysis

Once the cluster analysis was finished, PCA was 
used to develop the criteria for the automatic system for 
detecting anomalies. PCA, a technique for summarizing 
the information of a data set, was developed by Pearson 
(1901), Hotelling (1933), and Jolliffe (2002). PCA reduces 
the dimensionality of multivariate data while preserving 
meaningful information as much as possible. It uses unsu-
pervised learning, relying entirely on the input data itself 
instead of the corresponding target data. PCA transforms 
the original data to a new coordinate system. The new set 
of variables, known as PCs, is a linear transformation of 
the original variables. Each new variable is uncorrelated 
with other new variables. After projecting the initial data, 
the first coordinate lies in the direction with the largest var-
iance, the second coordinate with the second largest vari-
ance, and so on. The equation of PCA is given by 

𝒁𝒁 = 𝜱𝜱𝜱𝜱 (4) 

where 𝒁𝒁 denotes the PCs, 𝜱𝜱 is a matrix of coefficients 
called loads determined by PCA, and 𝑿𝑿 is a data matrix 
with 𝑛𝑛 observations and a set of 𝑝𝑝 features. Equation (4) 
yields 𝑝𝑝  linear transformations that form the PCs using 
the original variables. The first PC is written as 

𝑍𝑍1 = 𝑧𝑧𝑖𝑖1 = 𝜙𝜙11𝑥𝑥𝑖𝑖1 + 𝜙𝜙21𝑥𝑥𝑖𝑖2+. . . +𝜙𝜙𝑝𝑝1𝑥𝑥𝑖𝑖𝑖𝑖, i=1, 2,… ,n (5) 

This has the largest sample variance (𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍1)  is maxi-
mum) and is subject to the constraint that ∑ 𝜙𝜙𝑗𝑗12

𝑝𝑝
𝑗𝑗=1 = 1. 

Without the constraint, these elements can result in an ar-
bitrarily large variance. The remaining 𝑍𝑍𝑖𝑖 values are com-
puted such that their variances are maximized and subject 
to another constraint, so that the covariance between 𝑍𝑍𝑖𝑖 
and 𝑍𝑍𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗) equals to 0. For example, the optimization 
problem is solved to obtain the first PC. 

max
𝜙𝜙1,...𝜙𝜙𝑝𝑝

∑ 𝑧𝑧𝑖𝑖12𝑛𝑛
𝑖𝑖=1 = max

𝜙𝜙1,...𝜙𝜙𝑝𝑝
{1
𝑛𝑛
∑ (1
𝑖𝑖=1 ∑ 𝜙𝜙𝑗𝑗1

𝑝𝑝
𝑗𝑗=1 𝑥𝑥𝑖𝑖𝑖𝑖)2} (6) 

We calculated the matrix 𝜱𝜱 using the covariance matrix 
𝑺𝑺, which is written as follows: 

𝑠𝑠𝑖𝑖𝑖𝑖 =
∑ (𝑛𝑛
𝑘𝑘=1 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖)(𝑥𝑥𝑗𝑗𝑗𝑗−𝑥𝑥𝑗𝑗)

𝑛𝑛−1
 (7) 

Therefore, the singular decomposition of 𝑺𝑺  solves the 
PCA problem. 

𝑼𝑼𝑇𝑇𝑺𝑺𝑺𝑺 = 𝑳𝑳 (8) 

where 𝑳𝑳 is a diagonal matrix containing the eigenvalues 
of 𝑺𝑺, and 𝑼𝑼 is a matrix containing the eigenvectors of 𝑺𝑺. 
𝜱𝜱 can be computed by these two matrices. 

𝜱𝜱 = 𝑼𝑼𝑳𝑳−
1
2 (9) 

If we scale the variables and make their variances equal to 
one, then 𝜱𝜱 is simply the eigenvector matrix 𝑼𝑼. The co-
variance matrix becomes a correlation matrix 𝑹𝑹. When 𝑺𝑺 
is replaced with 𝑹𝑹, the principal components can be calcu-
lated by 

𝒁𝒁 = 𝜱𝜱𝑇𝑇𝑫𝑫
−1
2 𝑿𝑿 (10) 

where 𝑫𝑫 is the diagonal matrix obtained by 𝑺𝑺 with each 
𝑠𝑠𝑗𝑗𝑗𝑗  equals to one. 

3-3 Establishing the criteria for anomaly detection

We conduct PCA from the temporal variation aspect, 
aiming to find the temporal variation in rainfalls at each 
station. Given a specified cluster, the data matrix 𝑿𝑿 of this 
cluster on one day is 

𝑿𝑿 = �

𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 … 𝑥𝑥1𝑚𝑚
𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 … 𝑥𝑥2𝑚𝑚
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 𝑥𝑥𝑛𝑛3 … 𝑥𝑥𝑛𝑛𝑛𝑛

� , where each column vector 

𝑋𝑋𝑗𝑗 = �

𝑥𝑥1𝑗𝑗
𝑥𝑥2𝑗𝑗
⋮
𝑥𝑥𝑛𝑛𝑛𝑛

� denotes the hourly rainfall of 𝑛𝑛 raingauge sta-

tions at hour 𝑗𝑗 (the length of 𝑗𝑗 must be at least larger than 
two). Next, each variable 𝑋𝑋𝑗𝑗 is normalized to obtain the 
correlation matrix 𝑹𝑹. The original data set is normalized 
because PCA computes a novel projection based on the 
standard deviation of the variables. A variable with an ex-
tremely high standard deviation will be   given a higher 
weight for composing the new axis than a variable with a 
low standard deviation. If we normalize the data set in ad-
vance, then every variable will retain the same weight. By 
using Equation (10), we gain the first and second PCs 
𝑍𝑍1 and 𝑍𝑍2. 

Thereafter, the Euclidean distance between the origin 
and 𝑋𝑋𝑗𝑗 being projected on the PCA subspace of the first 
two PCs is calculated. 

𝑑𝑑 = �𝑍𝑍12 + 𝑍𝑍22  ≥  𝑑𝑑𝑖𝑖,𝑗𝑗,𝑝𝑝 (11) 

Considering 𝑛𝑛 as the number of days in which PCA 
can be performed (it rained on these 𝑛𝑛 days), the number 
of rainy days with 𝑖𝑖th storm type and 𝑗𝑗th cluster is 𝑛𝑛𝑖𝑖,𝑗𝑗. 
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For these 𝑛𝑛𝑖𝑖,𝑗𝑗 days, each day the maximum distance from 
the farthest projected data point to the origin can be com-
puted. The 𝑑𝑑𝑖𝑖,𝑗𝑗,𝑝𝑝 is obtained by taking the 𝑝𝑝th quantile of 
those maximum 𝑛𝑛𝑖𝑖,𝑗𝑗  distances and set 𝑑𝑑𝑖𝑖,𝑗𝑗,𝑝𝑝  as the 
threshold for determining anomalies. If 𝑑𝑑 (the Euclidean 
distance from any projected data point to origin) exceeds 
𝑑𝑑𝑖𝑖,𝑗𝑗,𝑝𝑝, this suggests the existence of anomalies at a specific 
station because PC1 (𝑍𝑍1) captures the largest spatial varia-
tion, and PC2 (𝑍𝑍2) accounts for the remaining variation of 
those normalized variables. The temporal variation in rain-
falls explained by each PC is non-overlapping. 

4. Results

The ideal clustering results of four storm types are pre-
sented in Figure 1. 

(a) Frontal Rain (b) Meiyu 

(c) Convective Storms (d) Typhoons 

Figure 1. Clustering Results for Four Storm Types

The following five variables for each storm type 
were calculated and used to conduct the K-means cluster-
ing analysis of 297 stations:  
I. The altitude of a station.
II. The longitude of a station.
III. The latitude of a station.
IV. The average annual rainfall from 1998 to 2019 of a

specified storm type.
V. The standard deviation of the average annual rainfall

from 1998 to 2019 of a specified storm type.

Performing PCA from a temporal variation aspect 
enables us to observe the temporal variation patterns in 
rainfall for each rain gauge station. We took March 27, 
2020, as an example. The data matrix of this day is a 36 × 
9 matrix because Cluster 4 of the frontal rain type contains 
36 stations (Table 3), and the 13th, 14th, 15th, 16th, 17th, 
18th, 22th, 23th, and 24th h of this day observed rainfalls. 
After normalizing the data matrix and conducting PCA, we 
obtained the variable correlation plot (Figure 2) and the 
new coordinate system (Figure 3) formed by PC1 and PC2. 

Figure 2. Variable Correlation Plot 

For Figure 2, the horizontal axis represents PC1, 
which accounts for 50.5% variation in our original data ma-
trix; the vertical axis represents PC2, accounting for 18.5% 
variation. Thus, the first two PCs explain 69% variation of 
the rainfall of this day. Figure 2 shows the correlation co-
efficients 𝑉𝑉 between 2 PCs and the nine original variables, 
which can be obtained as 

𝑟𝑟 =  𝑣𝑣𝑖𝑖𝑖𝑖×𝑒𝑒𝑗𝑗
𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑖𝑖)

(12) 

where 𝑣𝑣𝑖𝑖𝑖𝑖   denotes the 𝑖𝑖𝑡𝑡ℎ  element of the 𝑗𝑗𝑡𝑡ℎ  unit-
length eigenvector of the covariance matrix, 𝑒𝑒𝑗𝑗  denotes 
the eigenvalue of 𝑃𝑃𝑃𝑃𝑗𝑗 (𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑃𝑃𝑗𝑗)), and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑖𝑖) denotes 
the standard deviation of the variable 𝑋𝑋𝑖𝑖. Because the data 
matrix is normalized, the value of 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑖𝑖)  is 1. Using 
Equation (12), the relationship between each PC and a spe-
cific variable can be obtained. For instance, the correlation 
coefficient of PC1 with the 13th hour is 0.84, whereas that 
of PC2 and the 13th hour is 0.12. 

The colors in Figure 2 represent the expected contri-
bution of a variable to the PCs. The contribution of a vari-
able to a given PC (in percentage) is computed as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑟𝑟𝑖𝑖𝑖𝑖
2×100
∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑖𝑖𝑗𝑗

(13) 
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where 𝑟𝑟𝑖𝑖𝑖𝑖  denotes the correlation coefficient of variables 
𝑋𝑋𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑗𝑗. The expected contribution is attained using 

∑ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐×𝑒𝑒𝑗𝑗)𝑗𝑗

∑ 𝑒𝑒𝑗𝑗𝑗𝑗
(14) 

where 𝑒𝑒𝑗𝑗 denotes the 𝑗𝑗𝑡𝑡ℎ eigenvalue (variance) of 𝑃𝑃𝑃𝑃𝑗𝑗. 
For example, the contributions of the 13th hour to PC1 and 
PC2 are 15.51% and 0.86%, respectively, whereas the ex-
pected contribution is approximately 11.57%. 

Figure 3. The New Coordinate System after PCA 

Figure 3 displays the new coordinate system after the 
transformation. Similarly, the horizontal axis and the verti-
cal axis of Figure 3 are PC1 and PC2, respectively. The di-
mensions are reduced from nine (hours) to two (PCs) for 
the precipitation data of 36 stations. Because PC1 and PC2 
lie in the two directions with the first two greatest variances, 
the point that is the farthest from the origin indicates that 
the rainfall pattern of this station is much more distinct 
from that of the other stations. For each day available for 
PCA, we computed the Euclidean distance of each point to 
the origin and considered the largest distance. Given a clus-
ter of a specified storm type, all these distances are ob-
tained, and the threshold is determined using Equation (11) 
by setting 𝑝𝑝 = 90th quantile. Thus, the criterion for detect-
ing the anomalies is 10.19 (Table 3). The Donghe station is 
considered to have anomalies because its distance from the 
origin is 12.17, which exceeds the threshold of 10.185. The 
other stations are very close to the origin except for the 
Hualien station (the distance = 5.63). This plot implies that 
the variation of rainfall of the Donghe station is mainly 
captured by PC1, whereas that of the Hualien station is ex-
plained by PC2. In other words, among 36 stations, the 
temporal variation of the Donghe station is the largest. 

The colors in Figure 3 indicate the quality of repre-
sentation of individuals. cos2 equals to squared r in Equa-
tion (14). A high cos2 indicates a good representation of 
the individual by the PCs, and a low cos2 means that the 
individual is not perfectly represented by the PCs. From the 
color of the point Donghe station, we find that it is well 

represented by PC1. Moreover, the Hualien station is rep-
resented by PC2. 

Figure 4. Rainfalls Observed by Donghe Station and Nearby Stations 
Donghe Station is detected to have anomalies. The neighboring stations 
are Chenggong, Chihshang, Luye, Hongshih, Mingli, Taitung, and 
Hongyeshan, from near to far. 

Figure 4 shows the hourly rainfalls of the Donghe 
station and the other seven neighboring stations on Mar 27, 
2020. It rained a lot at the Donghe station from 1 pm to 4 
pm and from 10 pm to 12 am on this day (recorded rainfall: 
86.5 mm at 2 pm and 80.5 mm at 3 pm). Hence, the tem-
poral variation pattern in rainfall of the Donghe station is 
quite different from that of the other neighboring stations, 
classified as B1 (Table 2). Although our system identified 
that the Donghe station might have anomalies, further ver-
ification is needed to ensure whether anomalies exist.  

Figure 5. Anomaly Detected on Mar 27, 2020, in Cluster 4 of Frontal Rain 

Figure 5 shows the detected result on March, 27, 
2020. The red cross represents the Donghe station, and the 
blue circles represents the other stations in Cluster 4 of 
frontal rain. The red cross represents where Donghe Station 
is located, while there exist anomalies in the rain-falls that 
Donghe Station observed. The blue circles are other rain 
gauge stations, observing no anomalies, in Cluster 4.  

Table 3. Threshold for Anomaly Detection of Frontal Rain 

Cluster 1 2 3 4 5 6 7 8 
Number of stations 61 27 50 36 55 47 15 6 
Days Available 424 514 1401 947 551 682 592 1153 
Threshold 8.93 6.86 12.04 10.19 10.39 7.64 6.09 5.23 
Anomalies Detected 43 52 140 95 55 69 60 116 
PAIVV 4 7 23 12 11 9 5 5 
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To save space, Tables 3 only presents the anomaly 
detection results of each cluster of frontal rain. “Days 
Available” shows the number of days that PCA can be per-
formed.  For each day, we computed the Euclidean dis-
tance from the subspace of PC1 and PC2. Then, we ob-
tained the 90th quantile distance as the criterion for detect-
ing anomalies. Taking Cluster 1 of the frontal rain type as 
an example, we calculated 424 maximum distances and set 
8.93 (the 90th quantile of these distances) as the threshold. 
“Anomalies Detected” presents the number of anomalies 
(approximately one over ten of the available days) for each 
cluster. After our system discovered these anomalies, we 
examined them thoroughly and identified the possible 
anomalies for each cluster by visual verification (PAIVV). 

Table 4. Nine Categories of Anomalies Detected by PCA for Each Storm Type 
Code B1 B2 B3 B4 B5 B6 B7 B8 B9 Sum 
Frontal Rain 50 0 3 2 10 7 2 1 1 76 
Meiyu 56 1 9 3 18 5 0 4 5 101 
Convective 
Storms 87 1 4 0 4 0 1 0 4 101 

Typhoons 20 1 0 0 0 0 0 0 1 22 
Sum 213 3 16 5 32 12 3 5 11 300 

According to Table 4, PAIVV of all storm types were 
divided into nine categories and are presented in Table 4. 
Categories B1, B2, B5, and B9 require satellite or weather 
radar images for anomaly verification. By contrast, anom-
alies belonging to categories B3, B4, B6, B7, and B8 were 
successfully identified. For each storm type, the number of 
B1 is the most, and the number of B5 is the second most. 

5. Conclusion

We established an automated anomaly detection sys-
tem for hourly precipitation data. Anomalies can occur at a 
station because of the marked difference in observed rain-
falls between the specific station and other nearby stations. 
In other words, the rainfall observed by the station is ex-
traordinarily higher or lower than that of the neighboring 
stations. The K-means cluster analysis is adopted to group 
the 297 stations based on geographical locations and rain-
fall characteristics as per the four primary storm types in 
Taiwan. Then, PCA is used to compute d, which is the Eu-
clidean distance of the projected data point from the origin 
for each observation. When hours were taken as variables 
for PCA, d represented the temporal variation of the rain-
fall at each station in a specified cluster. When the value of 
d exceeded the threshold set, our system automatically in-
dicates possible anomalies. The anomalies identified with 
PCA have nine categories. Some of them may not be anom-
alies, which still require additional verification. Hence, our 
system can effectively and efficiently screen out the poten-
tial anomalies to achieve the QC of hourly rainfall data. 

The system is established using Shiny, a package de-
veloped by R Studio for users to create interactive web 

pages with R language. The URL of our online system is 
https://roam041.shinyapps.io/outlier_detection_v1/. 
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