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Abstract 

 
  A method is demonstrated in this study to calibrate the ensemble model output of the 3-week lead 2-

meter weekly average temperature forecast at given weather stations in Taiwan. Bayesian Processor of 

Ensemble (BPE), a statistical post-processing method that utilize Bayes’ Theorem, consists of procedure 

generating a likelihood and a prior distribution to obtain a posterior probability distribution based on latest 

evidence. The fully Bayesian nature allows BPE to produce informative probability distributions without 

relying on long training data compared to other calibration methods, allowing probabilistic forecasts based 

on ensemble models currently lacking long term reforecasts. 

  First, preprocessing of the data pair prior to likelihood generation is required to transform data to a 

normal-distributed form to fulfill the postulation of a meta-Gaussian model using Yeo-Johnson Transform 

(YJT), a method of power transform for unbounded real-valued data. Subsequently, applying a low-pass 

filter to remove unpredictable noise in climatological data can further improve the reliability of the BPE 

post-processed forecast. After pre-processing our training data, we use a Bayesian-based machine learning 

algorithm to infer the likelihood probability distribution. Likelihood is the marginal distribution given by 

the correlation between the ensemble mean and observation in the training data, and prior is given by 

climatological distribution of the predictand. The posterior, or the forecast probability density function for 

a target lead, is generated by the fusion of the inferred likelihood with the climatological prior once 

receiving the latest ensemble prediction. According to our validation results, ensemble model post-

processed by BPE is better skilled and reliable compared to its raw counterparts in predicting week-3 mean 

temperature, with only few years of training data required. 

 

Keywords: Ensemble Model, Probabilistic Forecasting, Statistical Post-processing, Bayesian Processor 

of Ensemble 

 

I. Introduction 

 

For extended range forecasts where the errors caused 

by non-linear process and incomplete modeling of the 

underlying process are amplified to a degree, 

deterministic forecast are no longer able to produce results 

that could be confidently used by decision makers. 

Probabilistic forecast is a preferable tool in such scenarios 

to quantify the uncertainty and distributions of future 

realizations. Using alternating perturbations and physical 

parameterizations, Ensemble Prediction Systems (EPS) 

represent the possible realizations of the current state by 

multi-member forecasts due to aforementioned reasons. 

However, EPS still inherits certain bias and are generally 

under-dispersive, hence, statistical post-processing is a 

proven approach in improving the reliability, sharpness 

and calibration of such models. There exits various 

calibration methods used by Central Weather Bureau 

(CWB). Each method holds its own strengths, some are 

simple but elegant, some are complex but sophisticated. 

However, some of them relies on the accumulation of 

large hindcast or historical templates to establish a 

sufficient amount of training data to effectively calibrate 

the EPS, some requires large amount of estimated 

parameters, some may suffer from over-fitting or over-

weighting certain predictors. (Hodyss et al., 2016; 羅存

文 等, 2016). Moreover, the raw output of EPS tends to 

approach the climatological distribution asymptotically as 

leadtime exceeds 2 weeks. In this research, we tend to 

confront the aforementioned issues by maximizing the 

usefulness of some EPS currently with limited 

accumulation of runs (e.g. CWB-GEPS), combining it 

with a longer climatological distribution by utilizing the 

asymptotic characteristic, sometimes to constrain 

predicted values to prevent over-fitting, sometimes to 

increase the dispersion, using concepts of Bayesian 

Statistics. 

Bayesian Processor of Ensemble (BPE, 

Krzysztofowicz & Evans, 2008, hereafter KE08;Wang et 

al., 2018), is a novel method currently under development 
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in CWB. Unlike other Bayesian methods currently used to 

post-process EPS, the structure of BPE fully conforms to 

Bayes’ Theorem: 

 

P(𝑤𝑡+𝑙|𝑥𝑓𝑡) =
L(𝑥𝑓𝑡|𝑤𝑡+𝑙)𝑅(𝑤𝑡+𝑙)

𝐻(𝑥𝑓𝑡)
  (Eq. 1) 

 

Fusing a shorter training set, or likelihood distribution 

(L(𝑥𝑓𝑡|𝑤𝑡+𝑙)) in the context of Bayes’ Theorem, with a 

climatological prior (𝑅(𝑤𝑡+𝑙)) to generate a calibrated 

posterior. 

Here, 𝑥𝑓𝑡  is defined as the ensemble mean of the 

predictor at time 𝑡 predicting leadtime 𝑙 ,and 𝑤𝑡+𝑙  is 

defined as the realization of predictand at time 𝑡 + 𝑙 . 

Then posterior, P(𝑤𝑡+𝑙|𝑥𝑓𝑡)  can be interpreted as the 

probability of realization 𝑤  at leadtime 𝑙  given a 

forecast 𝑥𝑓𝑡 . The prominent strength of BPE are as 

follows: 

 

1. The combination of a long climatic distribution to a 

shorter joint sample can reduce the requirement for 

lengthy hindcast sets, thus minimizing the resource 

and time to rerun after a new version of an EPS is 

released, allocating valuable computer resources to 

other more urgent matters. 

 

2. The complete Bayesian framework ensures that the 

posterior generated by BPE is well calibrated and 

most informative, with the training data at hand. For 

extended leadtimes where predictability reaches the 

current limit of our numerical model, the 

informativeness of the predictor reduces to 0, the 

posterior PDF will auto-converge to the 

climatological distribution.  

 

II. Methodology 

 

In this study, a sample of NCEP SubX Global 

Ensemble Forecast Model (NCEP-SubX) 2-meter 

temperature (T2M) downscaled using bilinear interpolation 

and simple height correction using moist adiabatic lapse 

rate to the corresponding locations of 28 Taiwan 

Meteorological Stations, forming a data vector {𝐱}. The 

downscaled T2M, with the corresponding observations at 

target leadtime {𝒘} forms a joint sample {𝐱,𝒘}, which 

will be referred as training set hereafter. Due to the non-

stationarity in the time series of the predictand, and 

season-to-season variability in model performance, we 

first group the training set to cool and warm season. 

Where cool season consists of November, December, 

January, February and March, and warm season consists 

of May, June, July, August and September. Models are 

trained separately after splitting the data. Transitional 

seasons, defined as April and October, will be classified 

into warm/cool according to which has a better overall 

score during cross-validation. After seasonal-split, we 

further remove the intra-seasonal non-stationarity by 

standardizing the joint sample: 

 

𝑥𝑘
′ =

𝑥𝑓𝑡−𝑚𝑘

𝑠𝑘
, 𝑤𝑘

′ =
𝑤𝑡+𝑙−𝑚𝑘

𝑠𝑘
  (Eq. 2) 

 

Where 𝑚𝑘 and 𝑠𝑘 is the climatological value of the 

predictand on day k in a year, after applying a low pass 

filter on the original time series 𝒎𝒌, 𝒔𝒌 to filter out high-

frequency perturbations. As succeeding procedures in 

BPE assumes that both predictands and predictors are 

Gaussian, we have to ensure our data is distributed 

accordingly. KE08 preprocess the training data using 

Normal-Quantile Transform (NQT), first fitting the 

training data by a Weilbull Distribution and inverse 

transformed onto a Gaussian quantile, but one of the 

drawbacks is which parametric distribution to use is pre-

determined, reducing the flexibility of the framework. For 

example, precipitation where values are strictly positive 

with a point mass at 0, Gamma distribution should be a 

better choice instead of Weibull. Hence, Yeo-Johnson 

power transform (Yeo & Johnson, 2000), is used to 

transform our data pair to fit to a Gaussian Distribution in 

this study: 

 

𝜓(𝑦, 𝜆) =

{
 
 

 
 

(𝑦−1)𝜆

𝜆
, (𝑦 ≥ 0, 𝜆 ≠ 1)

ln (𝑦 + 1), (y ≥ 0, 𝜆 = 1)
−[(1−𝑦)2−𝜆−1]

2−𝜆
, (𝑦 < 0, 𝜆 ≠ 2)

− ln(𝑦 + 1) , (𝑦 < 0, 𝜆 = 2)

 (Eq. 3) 

 
 

Where non-negative data such as precipitation, wind 

speed, radiation intensities etc., could use alternative 

power transform method such as Box-Cox transformation 

to fit data to a Gaussian Distribution.  

Subsequently, the transformed variable are mapped 

onto a Normal Cumulative Distribution Function (CDF) 

and inversed transformed to a standard normal quantile: 

 

𝑉 = 𝑄−1(𝐺(𝜓(𝑤𝑘
′ , 𝜆))),  𝑍 = 𝑄−1(K̅(𝜓(𝑥𝑘

′ , 𝜆))) (Eq. 4) 

 

Where (𝐺,K̅) is the Normal CDF of power transformed 

training pair, and Q-1 is the standard normal quantile. After 

transformation, we assume that the likelihood distribution, 

L(𝑍|𝑉) follows the relation: 

 

L(𝑍|𝑉 = 𝑣)~𝑁(𝑎𝑣 + 𝑏, 𝜎2)  (Eq. 5) 

 

The mean of marginal distribution is located at 𝑎𝑣 + 𝑏, 

when 𝑉 = 𝑣 , with a standard distribution of 𝜎2 . The 

parameters (𝑎, 𝑏, 𝜎2)  are estimated in this study by a 
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Bayesian Machine Learning Package (Salvatier et al., 

2016) using a No-U-Turn Sampler (NUTS) to infer the 

likelihood distribution based on the given data. For now, 

these parameters are derived individually for each station, 

which can be extended to grid points in the future.  

 

After the likelihood parameters is estimated, forecast 

can be made based on the information provided by the 

mean of the latest ensemble run, 𝑥𝐿̅̅ ̅  to generate a 

posterior distribution using following posterior 

parameters: 

 

A =
𝑎

𝑎2+𝜎2
, 𝐵 = −

𝑎𝑏

𝑎2+𝜎2
 , 𝑇2 =

𝜎2

𝑎2+𝜎2
 (Eq. 6) 

 

The posterior CDF, Φ(w|𝑥𝑙̅) is written as: 

 

Φ(𝑤𝑡+𝑙|𝑥𝐿̅̅ ̅) = 𝑄(
1

𝑇
[𝑄−1(𝐺(𝜓(𝑤𝑘

′ , 𝜆))) −

                           𝐴𝑄−1(𝐾(𝜓(𝑥̅𝑘
′ , 𝜆))) − 𝐵]) (Eq. 7) 

 

Here, the notations are shared with previous equations. 

Moments and probability density function (PDF) could be 

derived subsequently from CDF. The flowchart of the 

entire system is shown in Fig. 1. 

 

III. Data 

 

In this study, we aim to post-process ensemble output 

up to leadtimes of 3 weeks, with the observed weekly 

mean temperature as our predictor. Due to NCEP-SubX 

issues forecasts on Wednesday, Week 3 is defined as a 

leadtime of 18-24 days (432-576 hours) relative to the 

initial time, which starts from the third Sunday after the 

day the forecast is issued, similar to the definition of 

ECMWF(Vitart et al., 2019). The predictor is derived by 

the weekly ensemble mean T2M, averaged from the 

ensemble mean of T2M in leadtimes between 432-576 

hours. For both warm seasons and cool seasons, three 

years of training data are included and each station are 

modeled individually using the method described in Part 

II. NCEP-SubX produces prediction on a weekly interval, 

with leadtimes up to 35 days, therefore, for each group, 

our training data will contain approximately 4 × 5 × 3 =

60 data points. The validation set, contains data starting 

from the year 1999 to 2019, minus 3 years of training data, 

therefore, our validation data will contain approximately 

17 years of data, which covers 4 × 5 × 17 = 340 data 

points. The length of validation data ensures that our 

validation results describes the long-term, conclusive 

quality of a probabilistic forecast, including different 

climate regimes, not only a subset of hand-picked interval. 

The climatological distribution and moments are derived 

by the station data spanning from 1989 to 2019, if the 

station was established later than 1989, then the data will 

be taken as the longest record available. When training the 

model, 27 sets of parameters are trained individually to 

remove the data from a certain year when creating the 

climatology distribution. For example, if we are validating 

year 2001, our parameters should be trained without the 

climatological data from 2001, to ensure that the data from 

our trained model is completely independent from the 

validation set. 

 

IV. Results 

 

To fully assess the quality of a probabilistic forecast, 

both the benchmarks of reliability and the sharpness has 

to be evaluated. Hereafter, the raw ensemble will be 

referred as RAW and the post-processed ensemble by BPE 

will be referred as BPE_cal. The first metric we use to 

compare the RAW and BPE_cal forecast is the Continuous 

Ranked Probability Skill Score (CRPS, Hersbach, 2000): 

 

CRPS ≡ ∫ [𝐹(𝑦) − 𝐹𝑜(𝑦)]
2𝑑𝑦

∞

−∞
  (Eq. 8) 

 

𝐹(𝑦) is the forecast probability distribution, and 𝐹𝑜(𝑦) 
is the unit step function satisfying: 

 

𝐹𝑜(𝑦) = {
0, 𝑥 < 𝑜𝑏𝑠
1, 𝑥 ≥ 𝑜𝑏𝑠

 (Eq. 9) 

 

The overall CRPS then can be compared relative to the 

CRPS of climatological distribution, defined as 

Continuous Ranked Probability Skill Score (CRPSS): 

 

CRPSS = 1 −
𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅̅ 𝑚𝑜𝑑

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅̅ 𝑜𝑏𝑠
 (Eq. 10) 

 

The CRPSS over individual stations are shown in Fig.2 

and Fig.3. For both seasons, CRPSS is improved and show 

skillfulness relative to climatology after calibration. We 

discover that for NCEP-SubX, the improvement of 

BPE_cal is better during cold season compared to warm 

season.  

 

CRPS is a benchmark which measure both calibration 

and sharpness of a probability forecast, providing an 

overall knowledge of both the two calibration measures. 

For categorical, dichotomous forecast, we use the 

decomposed form of Brier Score to compare the 

reliability : 

 

BS =  
1

𝑛
[∑𝑁𝑖(𝑦𝑖 − 𝑜̅𝑖)

2 −

𝐼

𝑖=1

∑𝑁𝑖(𝑜̅𝑖 − 𝑜̅)
2

𝐼

𝑖=1

] 

 

 

+𝑜̅(1 − 𝑜̅)  (Eq. 11) 

 

 

(a) (b) 

(c) 
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Where 𝑛  denotes the total sample size, 𝑖  the bin 

numbers, with total bin size 𝐼 , and 𝑁𝑖  the number of 

sample in bin 𝑖, 𝑦𝑖  the probability value at bin 𝑖, 𝑜̅𝑖  the 

overall relative realized frequency of bin 𝑖  and 𝑜̅  the 

climatological frequency. The three components of BS are 

(a) reliability (b) resolution and (c) uncertainty. BS is a 

negatively oriented score, with a lower value of reliability 

component and higher value of resolution component 

getting a better BS. Fig. 4 and Fig. 5 are the reliability 

diagrams and the Brier Scores of raw and post-processed 

ensemble. The three colored lines denotes the reliability 

curve when the observed value lies above, below or at 

normal climatological intervals. The upper and lower 

bounds of intervals are defined using the same method of 

陳昀靖 等, 2016. A more reliable probability forecast 

system will produce reliability curves closer to the 

diagonal. From the reliability curve and the reliability 

component of BS, we can conclude that the reliability the 

BPE_cal is vastly improved over RAW.  

 

Albeit we have shown that both reliability and 

resolution could be greatly improved by our method, these 

benchmarks could be vague for non-meteorologists. For 

them, the economic benefit will be the direct assessment 

for the quality of a probability forecast system, measured 

by Economic Value (Chang et al., 2015; Richardson, 

2000). Due to the calculation of economic value between 

each users varies between their incident of interest, a 

benchmark for assessing the overall relative economic 

values between probability forecast systems for all users 

is used, which is defined as Informativeness Score (IS, 

Krzysztofowicz, 1992, hereafter K92): 

 

IS = (1 + (
𝜎

𝑎𝑆
)
2

)
−
1

2
 (Eq. 12) 

 

As stated in K92, a forecast system A that is sufficient 

for B will have an ex-ante economic value equal or higher 

than the latter, which in turn have an equally or higher IS. 

From Fig. 6.a, the IS of BPE_cal is improved with high 

significant level in cold season, but less so during the 

warm ones. Finally, we show the Calibration Score (CS, 

Krzysztofowicz & Sigrest, 1999), defined as: 

 

CS = {
1

3
[(𝑟75 − 0.75)

2 + (𝑟50 − 0.5)
2 + (𝑟25 − 0.25)

2]}  

(Eq. 13) 

 

Where 𝑟𝑝 indicates the probability of observed values 

lies within a designated exceedance fractile p, which in 

this case is [0.25,0.5,0.75]. CS measures how well-

calibrated is the probability forecast, and is a negative-

oriented score. From Fig. 6.b, we can see that probabilistic 

forecast produced by BPE_cal is more well-calibrated 

than its raw-counterparts conclusively, at least in the 

selected exceedance fractile, with a near-zero CS. 

 

V. Conclusion and Future Developments 

 

This is a pilot study to confirm the claim that the BPE 

structure allows improved skill from fusing a limited joint 

sample with a longer climatic sample when applied to 

given Taiwan stations. In our study with only 60 training 

data points, this seems to hold after validating a dataset of 

over 300 data points, which shows that BPE can improve 

CRPS, BS, IS and should be well-calibrated. Currently, 

the system is still simple, using univariate calibration. 

However, BPE allows combination of multiple predictors 

or multiple EPSs, which might produce even more robust 

probabilistic forecasts. In the future, we plan to: 

(1) Test BPE in post-processing CWB_GEPS, currently 

the prominent EPS developed by CWB. 

(2) Extend the structure of BPE to allow two or more 

predictors. 

(3) Use wave-filters to select predictable wavebands, 

filtering unpredictable noise from the raw EPS. 

(4) Adjust climatic prior to long-term climate drifting, 

using trend-detection technique (Chu et al., 2010). 
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Fig.2 CRPSS of BPE_cal (upper panel) and RAW(lower panel). From left to right is Month 11 

through 3 during validation period. Red corresponds to skillful predictions relative to 

climatology. 

 

Fig 1. Flow chart of the BPE system. 

Fig. 3 Same as Fig. 2, but for month 5-9 
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Fig. 4 Reliability diagram of RAW (left) and BPE_cal (right) for Month 11-3 during validation period. 

Fig.5 Same as Fig. 4 but for Month 5-9. 

Fig. 6 Box plot of (a) The Informativeness Score (IS) and (b) the Calibration Score (CS) 

(a) (b) 
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