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Abstract 

An extreme rainfall event occurred from 8 to 11 December 2018 along the coast of central Vietnam. The 

maximum rainfall amount in 72 hours observed was over 900 mm, and the associated heavy losses made it both a record-

breaking and significant event (hereafter, abbreviated as the D18 event). The analysis on the D18 event shows that the 

interaction of the low-level cold surge, originating in China, with the low-level easterlies wind over the South China Sea 

(SCS) led to the formation of a strong low-level convergence and then local deep convections. Some preexisting 

convection was also advected onshore by the easterly flow into central Vietnam against the Annamite Range. Besides, 

the strong easterly and strong southeasterly anomaly winds also played an important role in transporting moisture from 

the tropics across the SCS toward central Vietnam. These conditions led to the extreme rainfall along the eastern central 

coast due to the Annamite Range's barrier effect. 

Evaluation of the predictability of the D18 event by the high-resolution time-tagged ensemble predictions using 

the Cloud-Resolving Storm Simulator (CReSS) indicated that CReSS well-predicted the daily as well as 72-h accumulated 

rainfall during the D18 event at the lead times of day 1, day 2, and day 3. However, the predictive skill is reduced at the 

extended lead time beyond 3 days. These can be related to the rapid changes in atmospheric disturbances with time during 

the event due to the special position of Vietnam in the tropics. 

This is the first time a cloud-resolution model (CRM) is applied to forecast extreme rainfall in Vietnam, and the 

results are encouraging. Therefore, our result will provide the motivation to carry out further research on the predictability 

of the extreme rainfall in Vietnam by using the CReSS model. 

 

1. Introduction

Heavy to extreme rainfall causes natural disasters, 

such as deaths, flooding, inundation, landslides, and 

erosion. Viet Nam is one of the most disaster-prone 

countries in the world with many different types of natural 

hazards. In Vietnam, Central Vietnam is most affected by 

natural disasters and climate change. Storms and extreme 

rainfalls are the most frequent affecting this area (Chen et 

al., 2012a). For example, the D18 event, its peak 72-h 

accumulated rainfall over 900 mm, and resulted in 13 

deaths, an estimated 1200 houses inundated, around 

12,000 hectares of crops destroyed, and some 160,000 

livestock killed (Tuoi Tre newspaper). Furthermore, 

according to climate change and sea-level rise scenarios 

for Vietnam, extreme precipitation events will increase in 

both their frequency and intensity in the future (Monre 

2016). Hence, how to improve the ability in QPF of heavy 

rainfall events is very important. However, among all 

meteorological variables, precipitation is considered the 

most complex and difficult to predict. So, in order to 

improve the ability of QPF of heavy rainfall events, we 

need not only better to understand the mechanisms leading 

to heavy rainfall but also develop forecasting tools, 

particularly in the area of numerical weather prediction 

(NWP). At the facet of mechanism research that can lead 

to heavy or extreme rainfall, studies in the past have been 

shown main factors that led to heavy rainfall events in this 

region, such as the combined effect of cold surges, tropical 

easterly disturbances, and topography (Chen et al. 2012a; 

Nguyen-Le and Matsumoto 2016; van der Linden et al. 

2016a). Similar results were also found in Yokoi and 

Matsumoto (2008) when they investigated synoptic-scale 

atmospheric conditions over the SCS that caused heavy 

rainfall in central Vietnam on 2-3 November 1999. These 

authors confirmed that the coexistence of the cold surge 

and tropical depression–type disturbance is an important 

factor for the occurrence of heavy precipitation in central 

Vietnam. There was the cold surge without a tropical 

depression–type disturbance, would not lead to much 

precipitation. Besides, according to Nguyen-Thi et al. 

(2012), rainfall in central Vietnam is strongly affected by 

tropical cyclones that originate from the northwest Pacific. 

Some studies have examined the link between rainfall and 

El Niño/La Niña-Southern Oscillation (ENSO) for 

Vietnam and concluded that central Vietnam has more 



(less) rainfall during the La Niña (El Niño) years (Yen et 

al. 2010; Thang Van Vu et al. 2015). For D18 event, our 

analysis based on datasets such as reanalysis, satellite data, 

radar data indicates several main factors responsible for 

the D18 event: The strong northeasterly winds, originating 

in China interacts with the strong low-level easterly winds 

over the SCS, And then blow into central Vietnam and 

was blocked by Truong Son Range, led to the formation 

of a strong low-level convergence and then local deep 

convections. Besides, some preexisting convection was 

also advected onshore by the easterly flow into central 

Vietnam against the Annamite Range. These analyses also 

point out that the easterly wind also plays an important 

role in transport moisture bands across the South China 

sea that originated from the Pacific Ocean and the 

southern part of the SCS into central Vietnam.  At the facet 

of NWP, nowadays, with the rapid advance in computer 

technology increasing computer power, and the 

advantages of ensemble forecast, a range of possible 

outcomes can be generated by the NWP in days ahead, or 

longer into the future. The ensemble forecast is more and 

more commonly applied in operational weather prediction 

offices to improve the quality of weather prediction. 

Studies on the world have demonstrated the feasibility and 

good quality of ensemble prediction at longer ranges. For 

example, some studies have shown high skill in 

quantitative precipitation forecasts (QPFs) for extreme 

rainfall produced by typhoons in Taiwan using the CRM 

with high-resolution and time-lagged approach (e.g., 

Wang et al. 2016; Wang 2015; Wang et al. 2014; Wang et 

al. 2013).  

By advantages of time-lagged ensemble QPFs for both 

typhoons and heavy rainfall events approach has been 

proved. In this paper, we focus on presents the high-

resolution ensemble prediction with a time-lagged 

approach and evaluates predictability of the D18 event in 

the high-resolution time-lagged ensemble prediction 

system using the CReSS Model. The rest of this study is 

organized as follows: Section 2 describes the datasets and 

methodology used in the study. Results are presented in 

section 3. Finally, conclusions are given in section 4.  

2.  Data and method  

2.1. Data  

In order to perform this study, some data sources have 

been used: (1) the National Centers for Environmental 

Prediction (NCEP) operational Global Forecast System 

analysis and forecast grids with 0.25 x 0.25 degrees global 

latitude-longitude grid are used as initial and boundary 

conditions for CReSS predictions. (2) The reanalysis data 

provided by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) interim reanalysis data 

(ERA-Interim) is used to delineate the subsynoptic 

weather patterns during the D18. Its resolution is 0.25⁰ x 

0.25⁰ in longitude and latitude, and its temporal interval is 

6h (Dee et al. 2011). (3) Observed rainfall data at 69 

automated rain gauge stations across mid-central Vietnam 

with daily resolution (1200–1200 UTC, i.e., 1900–1900 

LT) between Dec 8 – Dec 13, 2018, were used to assess 

the model results. (4) The Tropical Rainfall Measurement 

Mission (TRMM) multi-satellite precipitation analysis 

3B42 Version 7 data used to analyze the D18 and assess 

the model results (Huffman et al. 2013). 

2.2. Model and experiment setup 

This study used the Cloud Resolving Storm Simulator 

(CReSS) model version 3.4.2, which was developed by 

Kazuhisa Tsuboki at the Hydrospheric Atmospheric 

Research Center (HyARC) of the University of Nagoya, 

and by Atsushi Sakakibara at Research Organization for 

Information Science and Technology. For more detailed 

information, readers can refer to “Numerical Prediction of 

High-Impact Weather Systems” document (Tsuboki, and 

Sakakibara, 2007).  

This study made a total of 21 members, with the first 

members run at 12 UTC 3 December 2018, and the last 

member-run at 12 UTC 8 December 2018. Between the 

first and the last members is multiple members that 

running every 6-h. The basic information of experiments 

that performed in this study, including domain setup with 

illustrating image and basic configuration shown in Table 

2.2.  

2.3. Verification of model results  

In order to verify QPFs, this study used some popular 

methods for verification of rainfall, such as (1) Verify by 

visual comparison between the model results and the 

observation data. Daily accumulate rainfall at 69 

automated rain gauges over study area was collected and 

compute to visually compared with the model results. (2) 

Verify by using Statistical methods to evaluate the skills 

of the model at different rainfall thresholds with the lowest 

rainfall threshold in evaluation is 0.05 mm and extends to 

900 mm for three days. These scores are listed in table 2.3 

along with their formulas, the perfect scores, and the worst 

scores, respectively. To applies these scores for verifying 

the model results. First, the rainfall from model results, 

and the observation data, a table of contingency will be 

made. In which, if both the model and the observation 

results show rain, the prediction is considered Hit (H). If 

the model does not show rain, but the observation shows 

rain, the prediction is considered Miss (M). If the model 

shows rain while the observation is not, the prediction is 

considered False alarm (F). Finally, if both the model and 

the observation results do not show rain, the simulation is  



Table 2.2: The basic information of experiments 

Domain setup and basic configuration Domain and topography (m) 

Domain size 3N – 26N; 98E – 120E 

 

Grid dimensions 

(x,y,z) 
912 x 900 x 60 

Grid spacing 2.5 km x 2.5 km x 0.5 km 

Projection Mercator 

Frequency of forecast 
Four-time per day (00, 06, 12, 18 

UTC) 

Forecast range Eight days (192 hours) 

Topography  

and SST 

Real at (1/120)⁰ and NCEP analyses 

on a 0.25⁰ x 0.25⁰ grid 

Cloud microphysics Bulk cold-rain scheme (six species) 

Ensemble size 21 members 

 

Table 2.3. List of statistic scores 

Name Formula Perfect score Worst score 

Frequency Bias (FBI) (H+F)/(H+M) 1 <<1 or >>1 

Probability Of Detection (POD) H/(H+M) 1 0 

False Alarms Ratio (FAR) F/(H+F) 0 1 

Threat Score (TS) H/(H+M+F) 1 0 

correct Negative (Daniel S.Wilks 2006). After that, 

these scores will be calculated by corresponding formulas 

in table 2.3. 

Besides, the Fraction Skill Score (FSS) (Roberts and 

Lean 2008) also applied to evaluate the model results. 

FSS’s score shows that a forecast with perfect skill has a 

score of 1; a score of 0 means zero skill. 

                

 

where N is the number of the observation station, 𝑝𝑓  is the 

forecast values, 𝑝𝑜 is the observed value. 

 2.4. The ensemble spread (standard 

deviation) 

The ensemble spread is considered a measure of the 

difference between the members to the ensemble mean, 

and known as the standard deviation (Std). In other words, 

the ensemble spread will reflect the diversity of all 

possible outcomes. Hence, the ensemble spread is often 

applied to predict the magnitude of the forecast error. If 

small spread indicates high theoretical forecast accuracy, 

and large spread indicates low theoretical forecast 

accuracy. Spread is computed by formulated below: 

 

 

where 𝑥𝑖  is the prediction value of member i, 𝜇𝑥 is the 

ensemble mean, N is the number of ensemble members. 

 3. Results  

As we know, an ensemble weather forecast is a set of 

forecasts that present the range of future weather 

possibilities obtained from multiple separate members. 

Hence, the simplest way to use the ensemble forecasts is 

by computing the ensemble mean.  Besides, some studies 

showed that the ensemble mean will have a smaller error 

than the individual ensemble members. This error 

reduction arises because high predictability features that 

the members agree on are accentuate by the mean, while 

low-predictability features that the members do not agree 
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on are filtered out or heavily dampened (e.g.; Murphy 

1988, Surcel et al. 2014). Therefore, this section will show 

the ensemble mean of rainfall scenarios and its spread for 

72-h rainfall of the D18. 

Figure 3.1 shows the scenarios of the ensemble mean 

of 72-h rainfall and its spread for periods of 12 UTC 08 

December to 12 UTC 11 December. With five groups of 

the ensemble mean evaluated. In which, the ensemble 

mean of the last 05 members includes members executed 

within ranges days 0-1 before the target date. The 

ensemble mean of the last 09 members includes members 

executed within ranges days 0-2 before the target date. 

The ensemble mean of the middle 08 members includes 

members executed within ranges days 2-3 before the 

target date. The ensemble mean of the first-08 members 

includes members executed within ranges days 4-5 before 

the target date. The ensemble mean of the 21 members 

includes members executed within ranges 0-5 days before 

the target date.  Results show that the ensemble mean of 

the last 05 members stands out with high-quality QPFs 

and closer to the observed rainfall data than the rest of the 

ensemble mean. The spatial distribution of rainfall in this 

scenario is considered similar to reality. However, the 72-

h rainfall amount is lower than in reality.  

In particular, figure 3.2a shows at 250 mm, the 

ensemble means of the last five members have TS=0.5 

(POD=0.6, FBI=0.9, FAR=0.3, not shown), meanwhile, 

the ensemble mean of the nine members has TS=0 

(POD=0, FBI=0, FAR=1, not shown). The ensemble 

means of the middle 08 members, the ensemble means of 

the first eight members, and the ensemble mean of 21 

members has no skill scores. At 350 mm, only the 

ensemble means of the last five members have skill scores 

with TS=0.2 (POD=0.3, FBI=FAR=0.4, not shown). At 

500 mm, skill scores of the ensemble mean of the last five 

members, such as TS=0 (POD=FBI=0, FAR has no scores, 

not shown), while the observed rainfall amount recorded 

greater than 800 mm. Contrariness, the ensemble mean of 

the mid 08 members is considered worst-quality QPFs due 

to the skill scores is the lowest compared to the rest of 

ensemble means. The FSS score (Fig. 3.2b) also shows 

that the ensemble mean of the last 05 members has the 

highest quality QPF with FSS=0.7, and the lowest quality 

QPF is the middle 08 members (FSS=0.14). Besides, FSS 

score of the ensemble mean of 21 members is 0.35.  

Furthermore, spread scenarios show the ensemble 

mean of the last five members has the largest spread, this 

meaning that in scenario of the spread is largest, the 

rainfall amount predicted by the model is very closer to 

observed rainfall data. Besides, it is clear to see that the 

ensemble means of the last 09 members and the ensemble 

mean of all members has a very larger spread, although 

the 72-h rainfall scenarios are mostly lower than 200 mm. 

These wide ranges of the spread may be related to 

individual members in these groups, which did not predict 

rainfall well due to the incorrect predicted of the surface 

wind field (Fig. 3.1). 

The maps of the probabilities distribution in Figs. 3.3 

indicating that over inland, the probabilities that 

ensembles can reach the threshold at 100 mm of rain is 

over 70% of the last 5 members, 40-60% for the last 9 

members, 30-40 % for the first 8 members over the haft of 

the south part of central, 20-40 % for 21 members, and 

just is 10-20% for the middle 8 members over a haft of the 

north part of the study area. For thresholds greater than 

100mm, there is a 50-60 % chance for the last 5 members, 

30-40 % for the last 9 members, and 10-20 % of 21 

members reached the threshold at 300 mm of rain. 

However, only the last 5 and the last 9 members can reach 

a threshold at 500 mm of rain with probabilities is 20-30%. 

No one group in 5 groups of the ensemble can touch 

threshold at 800 mm of rain. 

By analysis above show that the model has well 

predicted 72-h rainfall of D18 event within the lead time 

of 1 - 2 days before the target date. However, the model 

has not well predicted 72-h rainfall of the D18 event with 

lead time 2-3 days before the target date as analyzed and 

indicated in the previous paragraphs. This problem can 

relative to quickly change in the real turbulent atmosphere 

with time (unit is an hour), leading to much difference in 

the initial data. Meanwhile, all members of this study are 

executed every 6h. In particular, initial state analyzes 

based on GFS datasets at 12 UTC 08, 12 UTC 09, and 12 

UTC 10 (not shown) indicate that most of the middle 08 

members did not predict moisture 

convergence/divergence over the study area.  

Furthermore, ensemble sensitive analysis shows that 

the 24-h accumulated rainfall of every single day of the 

D18 event is strongly sensitive to initial conditions, and is 

strongest sensitive on Dec 10 (not shown). Besides, as we 

know, the computational errors will arise at every time 

step of the integration and will build up cumulatively. 

Hence, the result of the middle 08 members is the worst 

from each other. 
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Figure 3.1. Ensemble mean and their spread (shaded, scale at right) from 

all 21 time-lagged members, executed every 6 h from 1200 UTC 3 Dec 

to 1200 UTC 8 Dec, for the 72-h period from 1200 UTC 8 Dec to 1200 

UTC 11 Dec. 

 

 

 

Figure 3.2. Statistic scores for 72-h mean rainfall, obtained from twenty-one 8-day forecasts for the period between 

1200 UTC 08 and 1200 UTC 11 December 2018. 
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Figure 3.3 Probability distribution (%; shaded, the scale at right) from all 21 time-lagged members, executed every 6-h 

from 1200 UTC 3 Dec to 1200 UTC 8 Dec, reaching thresholds of 100, 300, 500, and 800 mm, for the 72-h period from 

1200 UTC 8 Dec to 1200 UTC 11 Dec. The observed areas at the same thresholds are depicted by the pink contours. 

For each picture, red labeled at the top-right corner show the number of members grouped to calculate the probability 

distribution. 

4. Conclusion 

This study focused on the analysis of an extreme 

precipitation event that occurred on 08 - 11 December 

2018 along the coast of the central of Vietnam and its 

predictability in the high-resolution time-lagged ensemble 

prediction system using the CReSS Model. Evaluation of 

the predictability of the D18 event by the high-resolution 

time-lagged ensemble prediction system using the CReSS 

model, indicating that CReSS well-predicted 72-h rainfall 

fields of the D18 event within the lead-time 0 – 2 days 

before the target date. In particular, results show CReSS 

has high skills in heavy-rainfall QPFs for this case with 

the FSS scores for the 72-h rainfall are 0.7 at the lead time 

0-1 day and 0.5 at lead time 0 - 2 days before the target 

date (Fig. 3.2b) as analyzed previous sections. These good 

results are due to the model having good predicts of other 

meteorological variables, such as surface wind fields. 

However, these prediction skills are reducing at extending 

lead time (longer than 3 days), and it is challenging to 

achieve the prediction of QPF for rainfall thresholds 

greater than 100 mm with lead time longer than 3 days. 

21 mem. 21 mem. 21 mem. 21 mem. 

First 8 First 8 First 8 First 8 

Mid 8 Mid 8 Mid 8 Mid 8 

Last 9 Last 9 Last 9 Last 9 

Last 5 Last 5 Last 5 Last 5 



These can be relevant to rapid changes in atmospheric 

disturbances with the time due to the special position of 

Vietnam in the tropics.  

References 

Chen, T.-C., J.-D. Tsay, M.-C. Yen, and J. Matsumoto, 

2012a: Interannual variation of the late fall rainfall 

in central Vietnam. J. Climate, 25, 392–413.  

Daniel Wilks, 2006. Statistical Methods in the 

Atmospheric Sciences, Academic Press. 

Dee, D. P., and Coauthors, 2011: The ERA-interim 

reanalysis: Configuration and performance of the 

data assimilation system. Quart. J. Roy. Meteor. 

Soc., 137, 553–597, doi: 

https://doi.org/10.1002/qj.828.  

Huffman GJ, Bolvin DT (2013) TRMM and other data 

precipitation data set documentation. NASA, 

Greenbelt, pp 1–40. 

Kazuhisa Tsuboki, and Atsushi Sakakibara, 2007. CReSS 

User's Guide (17th IHP training course text). 

Murphy, J. M., 1988: The impact of ensemble forecasts on 

predictability. Quart. J. Roy. Meteor. Soc., 114, 

463–493. 

Nguyen-Le, D., and J. Matsumoto, 2016: Delayed 

withdrawal of the autumn rainy season over central 

Vietnam in recent decades. Int. J. Climatol., 36, 

3002–3019.  

Nguyen-Thi, H. A., J. Matsumoto, T. Ngo-Duc, and N. 

Endo, 2012: Long-term trends in tropical cyclone 

rainfall in Vietnam. J. Agrofor. Environ., 6, 89–92. 

Roberts, N. M., and H. W.Lean, 2008: Scale-selective 

verification of rainfall accumulations from high-

resolution forecasts of convective events. Mon. Wea. 

Rev., 136, 78–97. 

Surcel, M., I. Zawadzki, and M. K. Yau, 2014: On the 

filtering properties of ensemble averaging for storm-

scale precipitation forecasts. Mon. Wea. Rev., 142, 

1093–1105, doi:10.1175/ MWR-D-13-00134.1. 

Thang Van Vu, Hieu Trong Nguyen, Thang Van Nguyen, 

Hiep Van Nguyen, Huong Thi Thanh Pham and Lan 

Thi Nguyen, 2015. Effects of ENSO on Autumn 

Rainfall in Central Vietnam. Advances in 

Meteorology, Vol 2015, Article ID 264373, 12 

pages. http://dx.doi.org/10.1155/2015/264373. 

Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, 

Mai Van Khiem, Nguyen Xuan Hien, Doan Ha 

Phong, 2016: The Climate Change and Sea Level 

Rise Scenarios for Viet Nam. The Ministry of 

Natural Resources and Environment. 

van der Linden, R., A. H. Fink, T. Phan-Van, and L. 

Trinh-Tuan, 2016a: Synoptic-dynamic analysis of 

early dry-season rainfall events in the Vietnamese 

central highlands. Mon. Wea. Rev., 144, 1509–1527. 

https://doi.org/10.1175/MWR-D-15-0265.1. 

Wang, C.-C.*, H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. 

Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 

2013: High-resolution quantitative precipitation 

forecasts and simulations by the Cloud-Resolving 

Storm Simulator (CReSS) for Typhoon Morakot 

(2009). J.Hydrol., 506, 26-41, 

http://dx.doi.org/10.1016/j.jhydrol.2013.02.018. 

Wang. C.-C.*, B.-X. Lin, C.-T. Chen, and S.-H. Lo, 2015: 

Quantifying the effects of long-term climate change 

on tropical cyclone rainfall using cloud-resolving 

models: Examples of two landfall typhoons in 

Taiwan. J. Climate.  

Wang, C.-C., 2014: On the calculation and correction of 

equitable threat score for model quantitative 

precipitation forecasts for small verification areas: 

The example of Taiwan. Wea. Forecasting, 29, 788–

798, doi:10.1175/WAF-D-13-00087.1. 

Wang, C.-C., S.-Y. Huang, S.-H. Chen, C.-S. Chang, and 

K. Tsuboki, 2016b: Cloud-resolving typhoon 

rainfall ensemble forecasts for Taiwan with large 

domain and extended range through time-lagged 

approach. Wea. Forecasting, 31,151–172, 

doi:10.1175/WAF-D-15-0045.1.  

Yokoi, and J. Matsumoto, 2008: Collaborative effects of 

cold surge and tropical depression–type disturbance 

on heavy rainfall in central Vietnam. Mon. Wea. 

Rev.,136,3275–3287, 

https://doi.org/10.1175/2008MWR2456.1 

Yen, M. C., T. C. Chen, H. L. Hu, R. Y. Tzeng, D. T. Dinh, 

T. T. T. Nguyen, and C. J. Wong, 2010: Interannual 

variation of the fall rainfall in Central Vietnam. J. 

Meteor. Soc. Japan, 89A, 259-270, 

doi:10.2151/jmsj.2011-A16. 

Website: 

Tuoi Tre newspaper: https://tuoitre.vn/mien-trung-tiep-

tuc-mua-lon-14-nguoi-chet-va-mat-tich-

20181212201907413.htm. 

http://dx.doi.org/10.1155/2015/264373
https://doi.org/10.1175/MWR-D-15-0265.1
http://dx.doi.org/10.1016/j.jhydrol.2013.02.018
https://doi.org/10.1175/2008MWR2456.1

