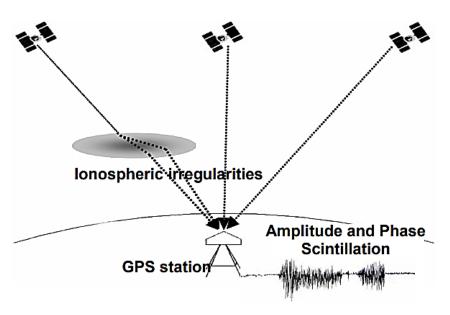
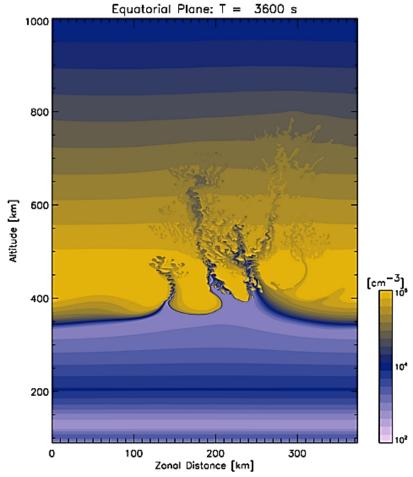
SCIntillation and IONosphere – eXtended (SCION-X) – A Small Satellite for Ionospheric and Atmospheric Science

Pin-An Lin¹, Kai-Lun Cheng¹, Tsai-Ju Yu¹, Ruo-Yu Wang¹, Yueh-Chun Hsieh¹, Glenn Franco Gacal¹, Sittinat Denduonghatai¹, Hsin-I Tu¹, Yu-Shun Wang¹, Guan-Po Ciou¹, Loren C. Chang¹, Jann-Yenq Liu¹, Cheng-Ling Kuo¹, Tang-Huang Lin², Amal Chandran³

¹Department of Space Science & Engineering, National Central University, Taoyuan City, Taiwan ²Center for Space and Remote Sensing Research, National Central University, Taoyuan City, Taiwan ³Satellite Research Centre, Nanyang Technological University, Singapore

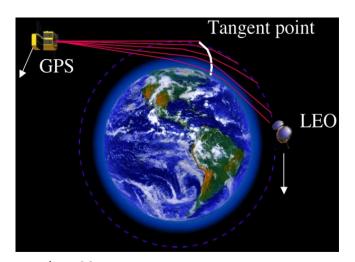
このでは、 にのでは、

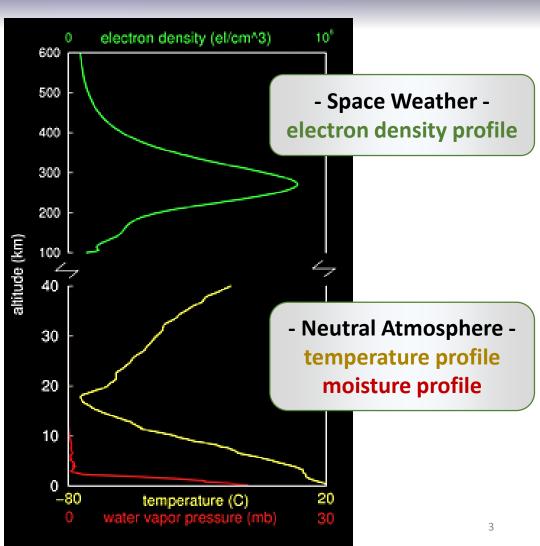

Date: 2020.10.13



Scientific Significance

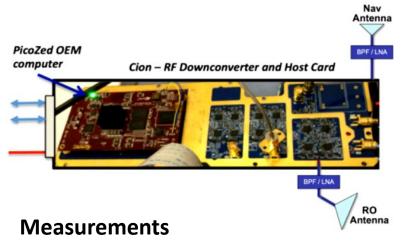
What is the ionospheric morphology in the F region and its associated anomalous phenomena?




Scientific Significance

What is the effect of assimilating GNSS Radio Occultation (RO) and Reflectometry (R) data on precipitation and aerosol forecasting?

Anthes, 2011

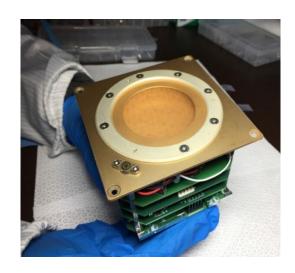


Mission Objectives and Payloads (1)

GeoOptics Cion-R GNSS RO / Reflectometry (R) Receiver

- Scintillation S4 index
- Signal-to-Noise ratio
- Ionosphere electron density
- Atmospheric pressure
- Dry temperature and water vapor in the troposphere and stratosphere

Space weather monitoring & Weather forecast


GeoOptics Cion-R					
Volume 1 U					
Power Consumption	12 W				
GNSS Signal	GPS L1, L2				
RO / R Antenna Size (Ideal)	10 cm x 30 cm patch array				

Mission Objectives and Payloads (2)

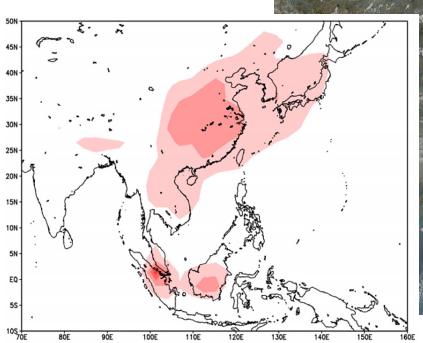
Compact Ionospheric Probe (CIP)

Measurements

- Electron and ion temperature
- Light to Heavy Ion ratio
- Ion drift velocity
- Ion density

CIP is the miniaturized version of AIP (Advanced Ionospheric Probe) aboard FORMOSAT-5.

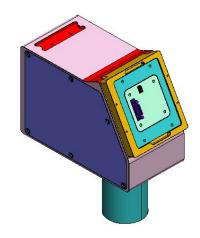
Space weather monitoring


CIP					
Mass & Volume	0.4 kg, 0.7 U				
Power Consumption	4.32 W				
Data Rate	Normal mode: 280 B/s				
	Fast mode: 2240 B/s				
FOV	90°				

Scientific Significance

What is the distribution of air pollution around the Southeast Asian region and Taiwan?

http://visibleearth.nasa.gov/view_rec.php?id=2361


Nakata, et al. 2018

Mission Objectives and Payloads (3)

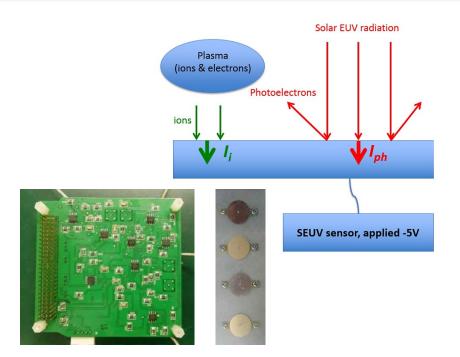
Hyper-Spectral Camera ANalyzer (Hyper-SCAN)

Hyper-SCAN is utilized to capture geographical images and air-borne features to quantify PM2.5 pollution distribution and locate its source origins.

Measurements

Spatial spectrum data for air pollution remote sensing

PM2.5 observation


Hyper-SCAN				
Mass & Volume	< 2 kg, 4 U			
sensor CMOS or CCD				
FOV	4.58° cross-track 0.057° along track			
Spectral Range	380 – 1020 nm			
Data Rate	4 MB/s			
Spatial Resolution	100 m @ 500 km Alt			

Mission Objectives and Payloads (4)

Solar Extreme Ultraviolet Probe (SEUV Probe)

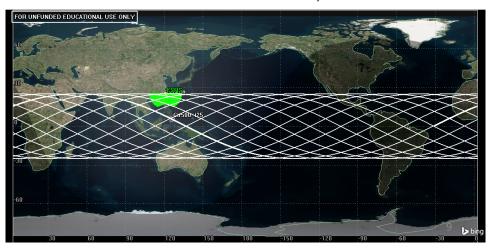
Measurements

- Photoelectric current
- Ionosphere Plasma current

Atmospheric photochemistry observation

SEUV Probe				
Mass & PCB Size	90 g, 95 mm x 90 mm			
Measured λ	< 280 nm			
Probe Type	4 circular electrodes $(\phi=1 \text{ cm})$, gold & tin			
Sampling Mode	240 or 15 sps			
Power Consumption	0.8 W			

Orbit Definition


Operational Constraints

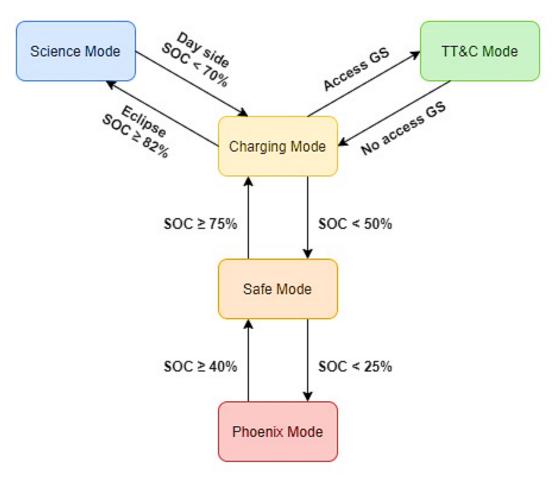
- Lifetime
- Communication time
- Observation time
- Finances

Payloads	Orbit Requirements
CIP	Altitude in F-region of ionosphere Latitude: at least ± 25°
Cion-R	Altitude: higher altitude → more comprehensive data Latitude: at least ± 25°
Hyper- SCAN	Altitude: lower altitude → higher resolution image Latitude: at least ± 25°

Altitude	500 km	
Eccentricity	0	
Inclination	25°	
RAAN	279.26°	
Argument of Periapsis	0°	
True Anomaly	0°	

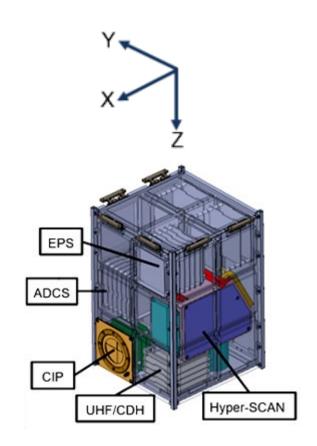
Duration 04:00 UTCG 1 Jun, 2022 - 2023

Mission Concept and Operations

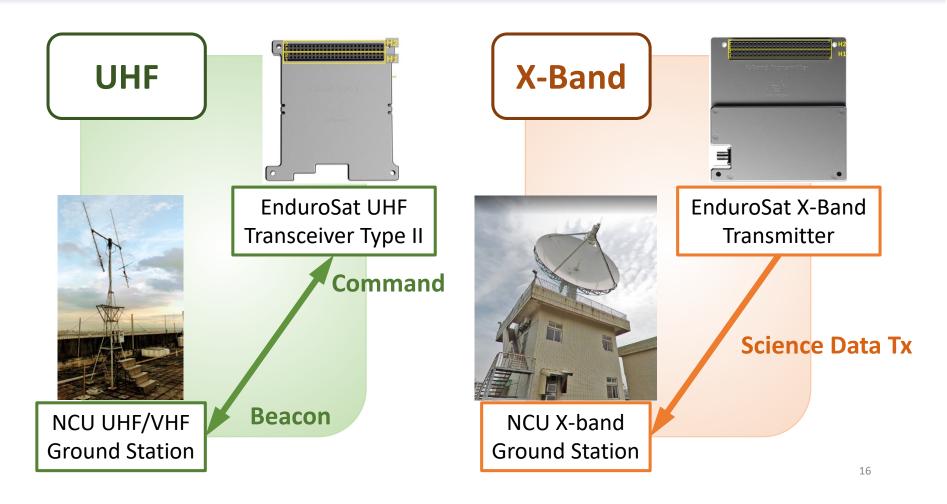

Operational modes of SCION-X

Subsystem	EMERGENCY		NOMINAL				
	Phoenix	Safe	Charging	TT&C	Science_RO	Science_R	Science_CIP
CDH	ON	ON	ON	ON	ON	ON	ON
EPS	ON	ON	ON	ON	ON	ON	ON
ADCS	OFF	Coarse Sun Point	Fine Sun Pointing	Surface pointing	LVLH	LVLH	LVLH
UHF Tx	Beacon	Beacon	Beacon	Beacon	Beacon	Beacon	Beacon
UHF Rx	ON	ON	ON	ON	ON	ON	ON
X-Band	OFF	OFF	OFF	ON	OFF	OFF	OFF
Cion-R	OFF	OFF	OFF	OFF	As required	As required	As required
CIP	OFF	OFF	OFF	OFF	As required	As required	As required
Hyper- SCAN	OFF	OFF	OFF	OFF (Night) ON (Sunlight)	OFF	OFF	OFF
SEUV	OFF	OFF	As required	OFF	OFF	OFF	OF ₁ F

Mission Concept and Operations


Flow chart of operational mode

SCION-X System Architecture


Subsystem	Notes	TRL
Cion-R	GeoOptics Cion-R Tallysman TW3872E GNSS Antenna x2	2 6
CIP	Compact Ionosphere Probe (CIP)	8
Hyper-SCAN	Hyperspectral Imager	4
SEUV	Solar Extreme Ultraviolet Probe	9
EPS	Modified IDEASSat EPS Control Board	6
COMM	EnduroSat UHF Transceiver Type II	9
(UHF)	Tape measure monopole antenna	2
COMM (X-band)	EnduroSat X-band Transmitter EnduroSat X-Band Single Element Antenna	6 6
ADCS	CubeSpace CubeADCS	7
C&DH	Microsemi SmartFusion 2	7

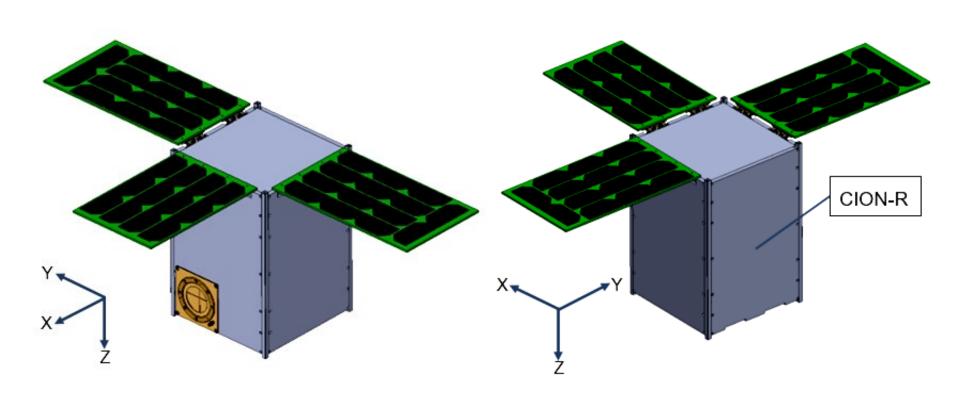
Communication Subsystem (COMM)

Communication Subsystem (COMM)

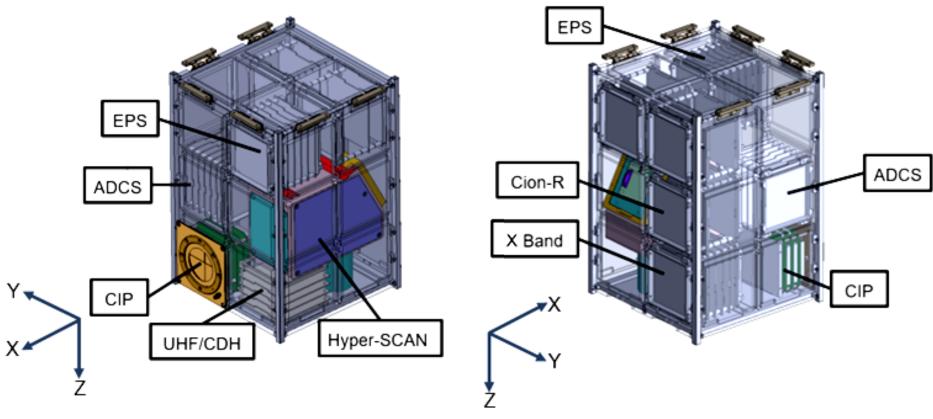
One Year Data Volume Estimation

	data rate	total time	total data size	one day data size	Descriptions
	(Bytes/sec)	(hr)	(GB)	(MB / day)	Descriptions
CIP (Normal)	280.00	0.00	0.00	0.00	0.00%
CIP (Fast)	2240.00	3315.66	24.90	69.86	37.85%
Cion-R	37000.00	2601.72	322.75	905.47	29.70%
Hyper-SCAN	4194304.00	0.47	6.59	18.50	8 pass
Total science data	-	-	354.24	975.33	
Downlink	7864320.00	11.23	296.04	830.54	30 Mbps, QPSK
Margin	-	-	-58.20	-163.28	

-16.43%


Electrical Power Subsystem (EPS)

Science Mode					
		Peak (W)	Duty Cycle (%)	Peak (W)	
	Battery heater	6.1	25.00%	1.53	
	EPS	3	100.00%	3	
Cube ADCS	ADCS	6.58	100.00%	6.58	
	Cion-R	15	29.70%	4.46	
POD	GNSS	0	0.00%	0	
TW3872E	Patch Antenna (x6)	0.50	29.70%	0.15	
	CDH	1.4	100.00%	1.4	
	UHF (Tx)	2.07	6.37%	0.13	
	UHF (Rx)	0.15	93.63%	0.14	
	Xband (Tx)	12	5.30%	0.64	
DAY	Hyper-SCAN	5	0.50%	0.03	
	CIP	4.8	37.85%	1.82	
			Total	19.85	
	Solar Panels power	43.47	62.15%	27.02	
No. of cells	40		Margin	(36.08%) 7.16	


Structure Subsystem (STR)

Structure Subsystem (STR)

Conclusions

CubeSats platform for scientific missions

- A 12U CubeSat in the preliminary design stage
- Expected to be launched in 2023

SCION-X Mission Objectives and Payloads

- Space weather monitoring & Weather forecast → Cion-R
- Ionospheric studies → CIP
- PM2.5 air pollution → Hyper-SCAN
- Atmospheric photochemistry observation → SEUV Probe

Analysis

- STK Simulation for the orbit.
- NCU UHF and X-Band Ground Station
- Requirements for each subsystem
- Trade off between power and data volume estimation

References

- ANTHES, R. A. Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos. Meas. Tech., 4. (2011), pp 1077-1103.
- Li, B.-X., T.-W. Fang, B. Han, B. Lim, A. Chandran, W.-S. Lim, and Y.-F. Tsai (2020), Performance assessment in the commercial off-the-shelf receiver radio occultation mission on VELOX-CI satellite, Adv. Space Res., 66, https://doi.org/10.1016/j.asr.2019.08.017
- Mass calculations: Wertz, J. R., Everett, D. F., & Puschell, J. J. (2011). Space mission engineering: The new SMAD. Hawthorne, CA: Microcosm Press.
- NAKATA, M., S. MUKAI & M. YASUMOTO. Seasonal and Regional Characteristics of Aerosol Pollution in East and Southeast Asia. 6. (2018).
- Orbit: https://virginorbit.com/
- Solar cell and silver coated-Teflon tape: https://www.researchgate.net/publication/317730911_CubeSat_On-Orbit_Temperature_Comparison_to_Thermal-Balance-Tuned_Model_Predictions:
- Spaceflight: https://spaceflight.com/schedule-pricing/#schedule
- THEERAPATPAIBOON, P., N. LEELARUJI, N. HEMMAKORN & P. SUPNITHI. The Effects of Sumatra-Andaman Earthquake on Total Ionospheric Electron Content (TEC) and Ionospheric Scintillation of GPS Signal in Thailand. (2005).

Question?