CWB現行同步衛星資料運用於空氣品質監測之進展

2020/10/15 第四組 劉豫臻

空汙監測產品簡介

同步衛星向日葵8號,較上一代衛星擁有較高的時間、空間、波譜解析,可廣泛運用於空汙產品發展,空汙監測產品持續精進中,現行主要作業產品有:

Band

number (see Table 1)

3

1,2,4

5-16 3

1,2,4

5-16 3

1,2,4

5-16 3

1,2,4

5-16 3

1,2,4

5-16

Observation area

Full Disk

Japan Area (Region 1 + Region

2)

Target Area

(Region 3)

Landmark Area

(Region 4)

Landmark Area

(Region 5)

- 真實色影像
- 日夜沙塵偵測
- 火點偵測(略)
- 氣膠光學厚度
- PM2.5 (AOD to PM2.5)

高的時間、空			Wave length [µm]	Himawari-8/9				
				Band number	Spatial resolution at SSP [km]	Central wave length [µm]		
						AHI-8 (Himawari-8)	AHI-9 (Himawari-9)	
			0.47	1	1	0.47063	0.47059	
ē,空汁監測產				0.51	2	1	0.51000	0.50993
				0.64	3	0.5	0.63914	0.63972
		0.86	4	1	0.85670	0.85668		
	Spatial resolution at	Numbers of pixels		1.6	5	2	1.6101	1.6065
	SSP (sub satellite point)[km]	East-west direction	North-south direction	2.3	6	2	2.2568	2.2570
	0.5	22,000	22,000	3.9	7	2	3.8853	3.8289
	1	11,000	11,000				() ()	6.0.170
	2	5,500	5,500	6.2	8	2	6.2429	6.2479
	0.5	6,000	4,800	6.9	9	2	6.9410	6.9555
	1	3,000	2,400					
	2	1,500	1,200	7.3	10	2	7.3467	7.3437
	0.5	2,000	2,000	8.6	11	2	8.5926	8.5936
	1	1,000	1,000			-		
	2	500	500	9.6	12	2	9.6372	9.6274
	0.5	2,000	1,000	10.4 11.2	13 14	2	10.4073	10.4074
	1	1,000	500					
	2	500	250				11.2395	11.2080
	0.5	2,000	1,000	12.4	15	2	12.3806	12.3648
	1	1,000	500					
	2	500	250	13.3	16	2	13.2807	13.3107

Figure from https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html

Reference: Stenven D. Miller et al. 2016

真實色彩影像空汙事件

Ash Event 2020/07/30 西之島

2020/02/07 Smoke or Haze 中國華北

Dust Event 2020/05/12

Smoke 澳洲野火 2020/01/30

Reference: Hu et al., 2008 and DUST RGB Guide

Reference: GOES-R Aerosol Optical Depth ATBD V4.2

氯膠光學厚度(NOAA-GOES-R演算法)

- 反演原理
 - $\rho_{toa} = \rho_{atm} + \rho_{surf}$
 - Over Ocean

Over Land

٠

- $\rho_{surf} = (1 \rho_{wc})\rho_w \rho_{wc}$
- Minimize $residual = \sum_{i=1}^{n} (\rho_{\lambda}^{cal} \rho_{\lambda}^{obs})^2$
- $\rho_{\lambda} = \eta \rho_{\lambda}^{f} + (1 \eta) \rho_{\lambda}^{c}$
- if minimize $\tau_{\lambda} = \eta \tau_{\lambda}^{f} + (1 \eta) \tau_{\lambda}^{c}$ $(\tau_{\lambda} \text{ is aerosol optical depth at wavelength } \lambda)$
- 0.28 aerosol model : 0.26 TOA reflectance in band 2 0.22 -Residual 1 0.20 0.16 Retrieved AOD550 TOA reflectance in band 1 Search residual range next time. If smallest residual.

- $\rho_{surf} = (c_1 + c_2\theta_s) + (c_3 + c_4\theta_s)\rho_{2.25\mu m}$ (ρ_{surf} 0.47um and 0.64um using traditional dark-target (DT) relationships)
- Minimize $residual = (\rho_{0.64\mu m}^{cal} \rho_{0.64\mu m}^{obs})^2$
- Searching $\tau_{550nm,i}$, when $\rho_{0.47\mu m,i} < \rho_{0.47\mu m}^{obs} < \rho_{0.47\mu m,i+1}$
- If minimize $\tau_{550nm} = \tau_{550nm,i} \frac{\rho_{0.47\mu m,i+1} \rho_{0.47\mu m,i}^{obs}}{\rho_{0.47\mu m,i+1} \rho_{0.47\mu m,i}} + \tau_{550nm,i+1} \frac{\rho_{0.47\mu m}^{obs} \rho_{0.47\mu m,i}}{\rho_{0.47\mu m,i+1} \rho_{0.47\mu m,i}}$ •

(different fine model
$$ho^f_\lambda$$
 , and coarse model ho^c_λ)

(ρ is reflectance, calculated from RTM)

(ρ_{wc} from whitecap, ρ_w from water)

AOD over land at different site

AOD to PM2.5

AOD 和 PM2.5 關係式會受到地面放射率、地形、汙染物傳輸、天氣等影響。 採用地面測站修正衛星AOD與PM2.5關係可以面化PM2.5並且可以達到一定準確度。 (Xie et al., 2015 and Lee et al., 2011)

選取 27.5km 範圍最近一小時之衛星反演AOD與PM2.5觀測,求得slope和斜率。 原始AOD和PM2.5觀測擬和關係式公式為(base on pm2.5 = aod x 71.08 + 0.69),

- AOD >0.1,固定offset=0.69,pm2.5 = aod x slope + offset
- AOD<=0.1,固定slope=71.08,pm2.5 = aod x slope + offset

Original Code from Hai Zhang 2019

AOD to PM2.5

2020/01/02 01:00 UTC

PM2.5 New

目前作業狀況總結

- 真實色彩影像運算效能優化,運算時間僅約需6min (傳輸延遲19min+運算6min)
- 真實色影像可用於沙塵、霾、煙、火山灰等汙染物辨識,但須人員主動判視。
- 日夜沙塵偵測可以即時自動辨識沙塵暴起源。
- > 氣膠光學厚度經過優化後,東亞地區運算時間僅約需6min(傳輸延遲19min+CLAVRX 5min+AOD 1min)
- 目前氣膠光學厚度於海上有較佳的反演能力 R²=0.834,陸地則為R²=0.561。
- 未來新版氣膠光學厚度將利用Machine Learning方式改善陸地的地表反射率估算,將可 有效提升陸地氣膠光學厚度準確度,目前正在測試中。
- •利用氣膠光學厚度轉換為PM2.5,在經過調整篩點及不規則網格內插到規則網格方式後,可有效改善反演結果R²=0.803。
- 取部分站點做為校驗AOD to PM2.5結果,在PM2.5分布較密地區,氣膠光學厚度轉換為PM2.5較為準確R²=0.79。

Refrence:

Miller, S. D., T. L. Schmit, C. J. Seaman, D. T. Lindsey, M. M. Gunshor, R. A. Kohrs, Y. Sumida, and D. Hillger, 2016: A Sight for Sore Eyes: The Return of True Color to Geostationary Satellites. *Bull. Amer. Meteor. Soc.*, **97**, 1803–1816, https://doi.org/10.1175/BAMS-D-15-00154.1

Dust RGB Quick Guide https://weather.msfc.nasa.gov/sport/training/quickGuides/rgb/QuickGuide_DustRGB_MSG_NASA_SPoRT.pdf

Hu, X. Q., Lu, N. M., Niu, T., and Zhang, P., 2008: Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia, *Atmos. Chem. Phys.*, 8, 1649–1659, https://doi.org/10.5194/acp-8-1649-2008

GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter. https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Optical_Depth_v4.2_Feb2018.pdf

Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., and Koutrakis, P., 2011: A novel calibration approach of MODIS AOD data to predict PM_{2.5} concentrations, *Atmos. Chem. Phys.*, **11**, 7991–8002, https://doi.org/10.5194/acp-11-7991-2011

Yuanyu Xie, Yuxuan Wang, Kai Zhang II, Wenhao Dong, Baolei Lv, and Yuqi Bai. Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. *Environ. Sci. Technol.* **2015**, 49, 20, 12280–12288. DOI: https://doi.org/10.1021/acs.est.5b01413