Central Weather Bureau 2020 Conference on Weather Analysis and Forecasting

Time-Lagged Cloud-Resolving Ensemble Quantitative Precipitation Forecasts for An Extreme Rainfall Event in Central Vietnam

Supervisor: Prof. Chung-Chieh Wang (王重傑) Student: Duc Van Nguyen

Department of Earth Sciences, National Taiwan Normal University

13~15 Oct., 2020, Taipei, Taiwan, R.O.C.

Outlines:

1. Introduction – THE CASE STUDY

Between 09 December and 12 December 2018, a record-breaking rainfall was observed along the coast of central Vietnam. Causes tens of thousands of homes flooded, at least 13 deaths and one missing,.... (hereafter – the DEC2018).

1. Introduction – THE CASE STUDY

72-h accumulated rainfall (mm, 12 UTC 8 – 12 UTC 11 Dec) by:

At some stations, rainfall sums recorded reached over 900 mm.

1. Introduction – THE HIGH-RESOLUTION AND TIME-LAGGED APPROACH

In recent years, some studies have shown high skill in quantitative precipitation forecasts (QPFs) for extreme rainfall produced by typhoons in Taiwan using the CReSS model with high-resolution and time-lagged approach (e.g, Wang et al. 2016; Wang 2015; Wang et al. 2014; Wang et al. 2013)

Cloud-Resolving Storm Simulator (CReSS): A cloud model developed and maintained by the Hydrospheric Atmospheric Research Center (HyARC) of Nagoya University, Japan since 1998 (Tsuboki and Sakakibara 2002, 2007)..

				-
	Low-resolution ensemble forecasts	High-resolution deterministic forecasts	High-resolution forecasts using time-lagged ensemble	ç.
Rainfall	Avg	Very good	Very good	
Track	Avg	Good	Very good	
Intensity	Avg	Good	Good	
Striking probability	Avg	—	Good/very good	Ress
Lead time	Avg	Poor	Very good	
Grid spacing	5 km	_	2.5 km	
Fine-domain size	$750\mathrm{km} \times 900\mathrm{km}$	—	$1860 \mathrm{km} \times 1360 \mathrm{km}$	
Forecast range	3 days (72 h)	—	8 days (192 h)	
Forecast frequency	Every 6 h	_	Every 6 h	

2. DATA

✓ Reanalysis data:

ERA-Interim: horizontal resolution: 0.25° x 0.25° Interval time for download: The DEC2018: 12 UTC 8 -12 UTC 11 Dec Climate data: Every December, 1980-2010.

✓ Initial data:

NCEP GFS analysis data, horizontal resolution: 0.25° x 0.25° with 26 levels Interval time for download Every 6 hours from 12 UTC 3 Dec to 12 UTC 10 Dec

Observation data:

69 stations over central of Viet Nam

✓ Satellite data:

TRMM multi-satellite precipitation analysis 3B42 Version 7, horizontal resolution 0.25° x 0.25° Interval time: 12 UTC 8 Dec to 12 UTC 11 Dec

The study area and 69 rainfall stations (pink)

3. EXPERIMENTS SETUP

Domain setup and basic configuration in this study							
Model	Cloud-Resolving Storm Simulator (CReSS), version 3.4.2 (<i>Tsuboki and Sakakibara 2002,</i> 2007)						
Domain size	3N – 26N; 98E – 120E						
Grid dimensions (x,y,z)	912 x 900 x 60						
Grid spacing	2.5 km x 2.5 km x 0.5 km						
Projection	Mercator						
Frequency of forecast	Four time per day (00, 06, 12, 18 UTC)						
Forecast range	8 days (192 hours)						
Topography and SST	Real at (1/120)° and NCEP analyses on a 0.25° x 0.25° grid						
Cloud microphysics	Bulk cold-rain scheme (six species)						
Ensemble size	29 members						

[m]

3. EXPERIMENTS SETUP

A Strategy to run members (Wang et al. 2016)

4. EVALUATION METHODS FOR QPF_s

1. The visual verifications

2. The statistical indices (Statistical methods in the atmospheric sciences by Daniel S.Wilks, second edition 2006)

			Event observed					
Event Forecast			Yes		No (Throshold)		Marginal total	
			(2 mreshold		(<threshold)< td=""><td colspan="2"></td></threshold)<>			
		Yes (≥ Threshold)	Hit (H)		False alarm (F)		Fc Yes	
		No (<threshold)< td=""><td colspan="2">Miss (M)</td><td colspan="2">Corr.non-event (CN)</td><td colspan="2">Fc No</td></threshold)<>	Miss (M)		Corr.non-event (CN)		Fc No	
		Marginal total	Obs Yes		Obs No		Sum total (n)	
Name			Formula		Perfect score		Worst score	
Frequency Bias (BS)			(H+ <mark>F</mark>)/(H+M)		1		<<1 or >>1	
Probability Of Detection (POD)			H/(H+M)		1		0	
False Alarms Ratio (FAR)			F/(H+F)		0		1	
Threat Score (TS)			H/(H+M+F)		1		0	

4. EVALUATION METHODS FOR QPFs

3. The Fraction Skill Score (FSS) (Roberts 2005; Roberts and Lean 2008)

FSS=1-
$$\frac{\frac{1}{N}\sum_{i=1}^{N}(P_f - P_o)^2}{\frac{1}{N}\sum_{i=1}^{N}P_f^2 + \frac{1}{N}\sum_{i=1}^{N}P_o^2}$$

Where:

- N The number of observation station
- p_f The forecast values
- p_{o} The observed values

FSS's score shows that a forecast with perfect skill has a score of 1; a score of 0 means zero skill.

ENSEMBLE MEAN

Average 24-h accumulate rainfall and its spread (mm) for 10 Dec 2018

5. ENSEMBLE MEAN - 10/12/2018

Threat Score

Fraction Skill Score

Midle 08

Number of members

First 08

All (25)

0.00

Last 05

Last 09

Max rainfall at obs stations: 644.4 mm (Nui Thanh) 539.2 mm (Cau Lau) 517 mm (Thang Binh) 446.8 mm (Ky Phu)

Probability distribution generated by the time-lagged ensemble for 24-h rainfall (12 UTC 9 Dec to 12 UTC 10 Dec)

ENSEMBLE MEAN

Average 72-h accumulate rainfall and its spread (mm) for 8-11 Dec 2018

5. ENSEMBLE MEAN- 72 h (8-11/12/2018)

Threat Score

Max rainfall at obs stations: 1054 mm (Thang Binh) 1004 mm (Bach Ma) 983 mm (Da Nang)

Probability distribution generated by the time-lagged ensemble for 72-h rainfall (12 UTC 8 Dec to 12 UTC 11 Dec)

16

6. CONCLUSION

This study focused on predictive testing an extreme precipitation event that occurred on 8 - 11 December 2018 along the coast of central of Vietnam, and evaluates its predictability in the High-Resolution Time-Lagged Ensemble Prediction System using the CReSS Model. The major findings of this research can be summarized as follows:

- CReSS has high skills in heavy-rainfall QPFs for this case, not only at lead time day 1 but also in days 2 and 3.
 - ✓ The FSS scores for the 24-h rainfall of Dec 10 at the lead time day 1, day 2, day 3 is 0.6, 0.64, respectively.
 - \checkmark FSS scores for the 72-h rainfall is 0.7 at lead time day 1 and 0.5 at lead time day 2.
- It is challenge to achieve the prediction of QPF for rainfall thresholds greater than 100 mm with lead time longer than 3 days.

This is the first time a cloud-resolution model (CReSS) has been applied to forecast extreme rainfall in Vietnam, and the results are very impresive.

