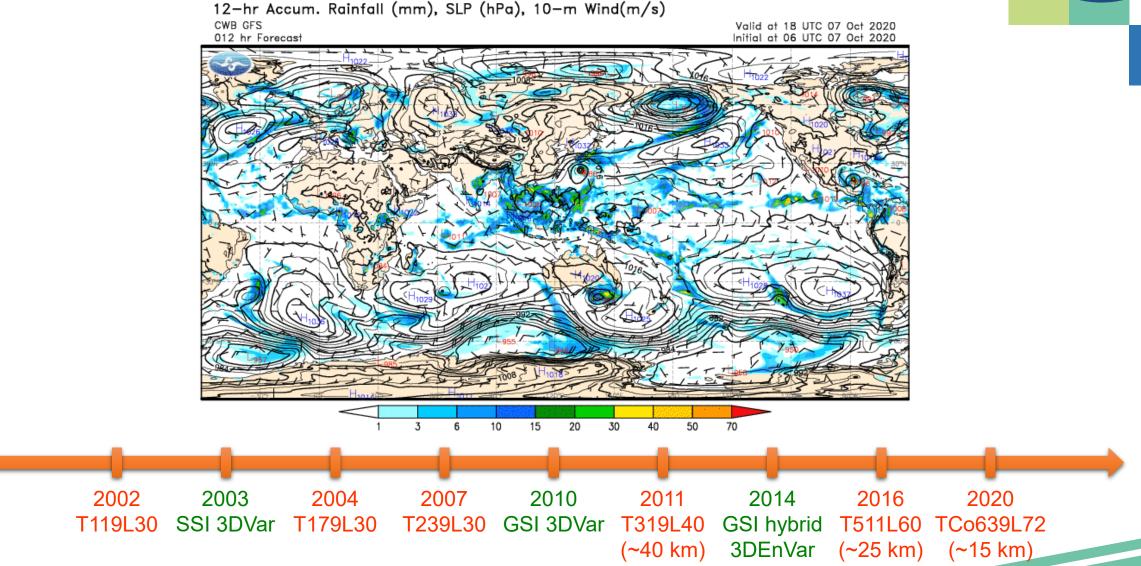
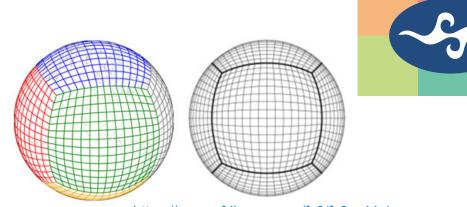
FV3GFS 全球模式之資料同化 於氣象局之建置與初步評估

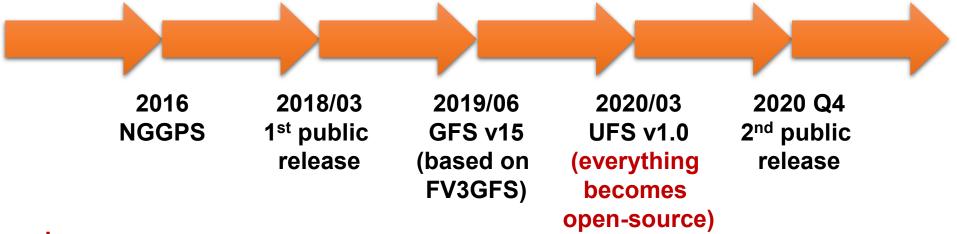
Development and preliminary evaluation of the data assimilation for the FV3GFS global model at CWB


連國淵¹、鄧雯心¹、趙子瑩¹、黃子茂¹、林宗翰¹、陳建河²

¹中央氣象局氣象科技研究中心 ²中央氣象局氣象資訊中心


2020/10/13 109 年天氣分析與預報研討會

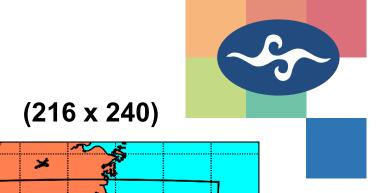
CWB Global Forecast System (CWBGFS)

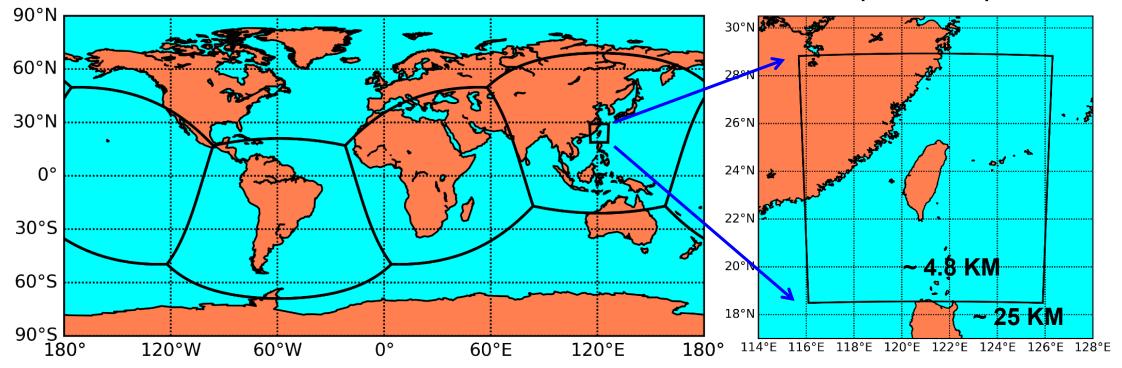


NCEP FV3GFS

- Originally developed by GFDL (Lin and Rood 1997; Lin 2004)
- Finite volume (FV) method
- Non-hydrostatic
- Cubed-sphere grid (FV3)
- Local grid refinement: Nested tile (Harris and Lin 2013)

https://www.gfdl.noaa.gov/fv3/fv3-grids/




CWB's goals:

- Build a flexible global NWP and DA system for both operation and research in Taiwan's community
 - Fit to CWB's operational environment (hardware, software)
 - Easy use for research
- Joint the world-wide community development (feedback to NCEP)

FV3GFS grid configuration at CWB

C384T

Grid settings for the initial operation:

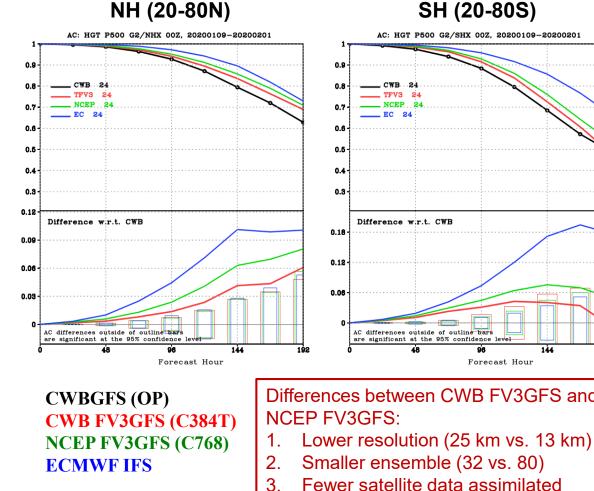
C384T (~25 km) with an online-nested tile for the Taiwan area (~4.8 km) cf. NCEP: C768 (~13 km)

All data assimilation work so far is limited to the global tiles only.

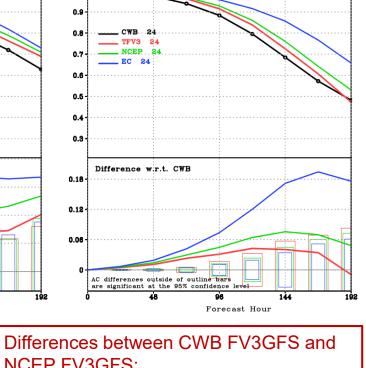
Current status of the FV3GFS at CWB

- Completed porting of FV3GFS and GSI code, and workflow scripts onto CWB's HPC
- Added capability of assimilation CWB FGGE-format observation data
- Tested the following configurations:
 - C384T (~25 km) deterministic forecast resolution;
 C192T (~50 km) ensemble resolution
 - Various DA methods:
 - 3DVar
 - Ensemble Kalman filter (EnKF)
 - Hybrid 3D/4DEnVar
 - Operational Early (Major)—Post analysis workflow
- A number of development work described later

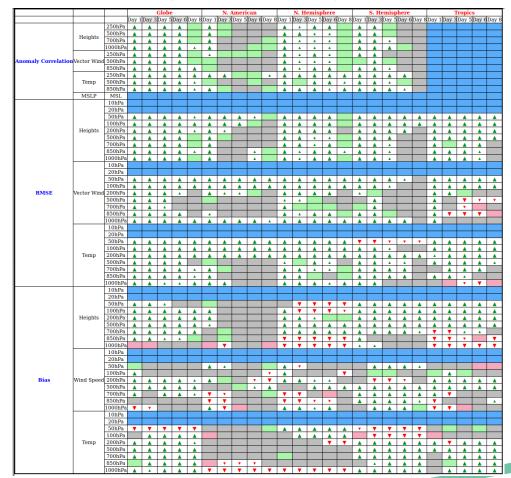
First one-month experiment


		CWBGFS–GSI operation	FV3GFS–GSI test				
Experimental perio	d	2020/01/01 – 02/01 (one month)					
Deterministic forecast system	Resolution	T511 L60 (25 km)	C384T L64 (25 km)				
	Data assimilation method	3DEnVar	4DEnVar				
	Resolution	T319L60 (40 km)	C192L64 (50 km)				
Ensemble system	Ensemble size	36 + 36 lag-ensemble	32				
	EC bogus	V	-				
Observations assimilated	Typhoon bogus	V	_				
	Near Sea Surface Temperature (NSST) analysis	No (replaced with external data)	V				
	Ozone analysis	No (replaced with external data)	V				

First one-month experiment


99.9% significance level 99% significance level 95% significance level Not statistically significant

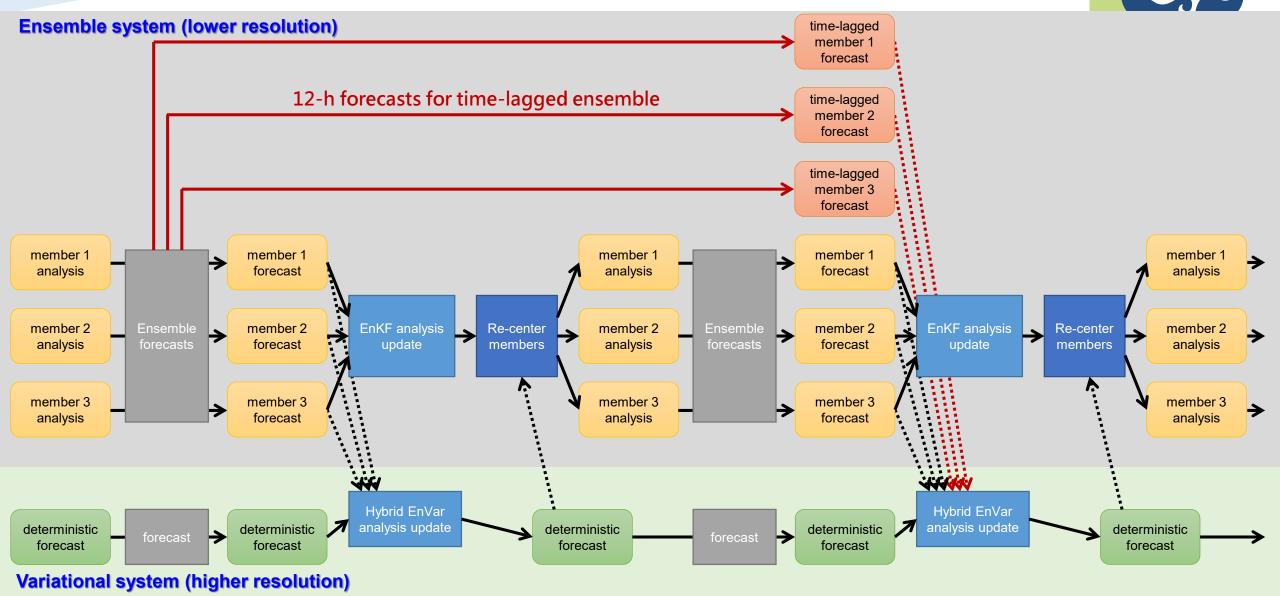
500-hPa height anomaly correlation



SH (20-80S)

Scorecard – Green/Red : CWB FV3GFS is better/worse than CWBGFS(OP)

(2020/01/09 - 02/01)

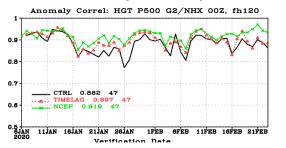


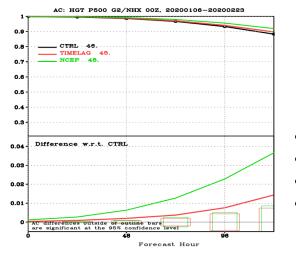
Development and testing work on FV3GFS DA

- Testing on the sea ice and snow depth analysis procedures (黃子茂)
- Time-lagged ensemble (趙子瑩) [Talk A2-14]
- TC vital assimilation (鄧雯心)
- LETKF testing (鄧雯心)
- FORMOSAT-7 RO bending angle assimilation (黃子茂、林宗翰)
- Himawari-8 IR radiance assimilation (林宗翰、周鑑本)

Hybrid EnVar with time-lagged ensemble

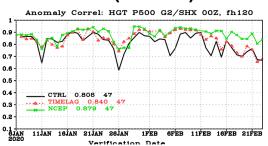
交通部中央氣象局 Central Weather Bureau

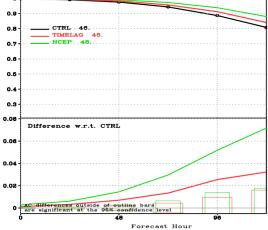

Results with time-lagged ensemble


Significant improvement by employing the time-lagged ensemble (32+32 members)

2020/01/01 00Z ~ 02/18 00Z

500-hPa height anomaly correlation


NH (20-80N)



FV3GFS CTRL (32mem) FV3GFS TIMELAG (32+32mem) NCEP GFS (C768 / 80mem)

SH (20-80S)

AC: HGT P500 G2/SHX 00Z, 20200106-20200223

Scorecard – Green/Red : ^{95% significance level} Not statistically significant

					Globe				N. A	meri	ican			N. He	misp	nere			S. H6	misp	nere				ropic	S
				1 Day 3	Day 5	Day 6	Day 8		Day 3	Day 5	Day 6	Day 8	Day 1	Day 3	Day 5	Day 6	Day 8	Day 1	Day 3	Day 5	Day 6	Day 8	Day 1	Day 3	Day 5	Day 6
		250hPa	A		A									A												
		500hPa							A																	
	Heights	700hPa																								
		1000hPa																A								
		250hPa							-	_												-				
									-		<u> </u>				•						-	<u> </u>				<u> </u>
nomaly Correlation	Vector Wind	500hPa						A	A										A							
		850hPa	A .	A	A			A	•					•					A	A						
		250hPa																								
	Temp	500hPa																				-				
	, comp	850hPa									-											<u> </u>				
					A			A	A									A	•	A						
	MSLP	MSL																								
		10hPa																								
		20hPa																								
		50hPa																								
		100hPa												-												
	Heights	200hPa																A								
		500hPa																				-		A	A	
		700hPa			Â			-	À	-	-		Ā		-			Ā	-	-		<u> </u>	Ā			
		850hPa																				<u> </u>				
				A	A			A	A	A			A	A	A			A	A	A			A	A	A	
	L	1000hPa							•					•				A							•	
		10hPa																								
		20hPa																								
		50hPa						A	A				A	A				A							A	
		100hPa							A									A	A						A	
RMSE	Vector Wind	200hPa																								
RWIE		500hPa						A																		
		700hPa													_							-				
														•	_											
		850hPa			A			A	•				A											A	A	
		1000hPa			A			A											A							
		10hPa																								
		20hPa																								
		50hPa																						•		
		100hPa												-								-			A	
	-	200hPa			Ā			Ā	Ā	Ā			Ā		Ā.			Ā	Ā.	Ā		-	Ā.	Ā	Ā	
	Temp	500hPa							-	-			Ā									<u> </u>				
									-														A	A	A	
		700hPa						A					A					A	A						A	
		850hPa	A .					A																		
		1000hPa							A									A						A		
		10hPa																				-				
		20hPa		-							-			_	_						-	-				
		50hPa						•					•	•	•							-			•	
								•			_			•	•									•		
		100hPa											•					A							A	
	Heights	200hPa							•	•				•												
		500hPa						A						•	•			A						-		
		700hPa							A														•			
		850hPa		•	•			Ā	Ā																	
		1000hPa						÷					•	• •	•			Â					•			
	H								•	-			•		•				•							
		10hPa																					-			
		20hPa																								
		50hPa		•									•					A								
		100hPa																		•				•	•	
Bias	Wind Speed	200hPa																								
DiaS	Sheed	500hPa																-	-	-						
														-												
		700hPa						A	•					•				A					A	A		
		850hPa																						•		
		1000hPa																								
		10hPa																								
		20hPa																								
		50hPa						•						•	•											
																		-	-	-						
		100hPa												•											-	
	Temp	200hPa							•				•	•				A					•		•	
		500hPa							•	•				•	•											
		700hPa						•	· ·	•								-								
																			A	A				•		
		850hPa 1000hPa							•	•			•					A					•			
								•	•	•				•	•					A						

▲ ♥ 99.9% significance level
 ▲ ♥ 99% significance level

TC vital (MinSLP) assimilation

- Special procedures/bogus data for TC initialization:
 - NCEP: TC vital (i.e., MinSLP) assimilation (Daryl 2011)
 - ECMWF: None (never)
 - CWBGFS: TC bogus data + Relocation
 - CWB FV3GFS: ??
- Experiments:
 - CTL: Assimilate operational observations
 - TCP: Assimilate operational observations + TC Vital
 - 5 typhoons: FRANCISCO, LEKIMA, KROSA, BAILU, PODUL (2019/08/04 00Z – 08/29 18Z)

TC vital (MinSLP) assimilation

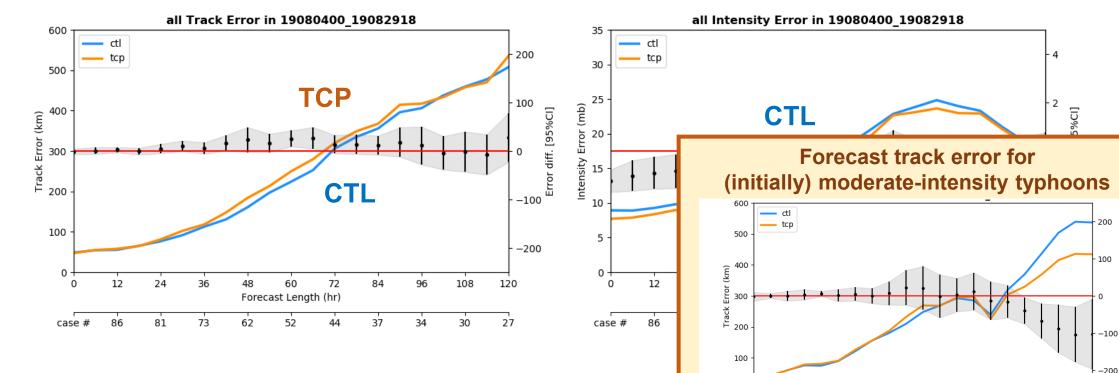
diff. [95%CI]

Error

108

120

0-120h Forecast track error



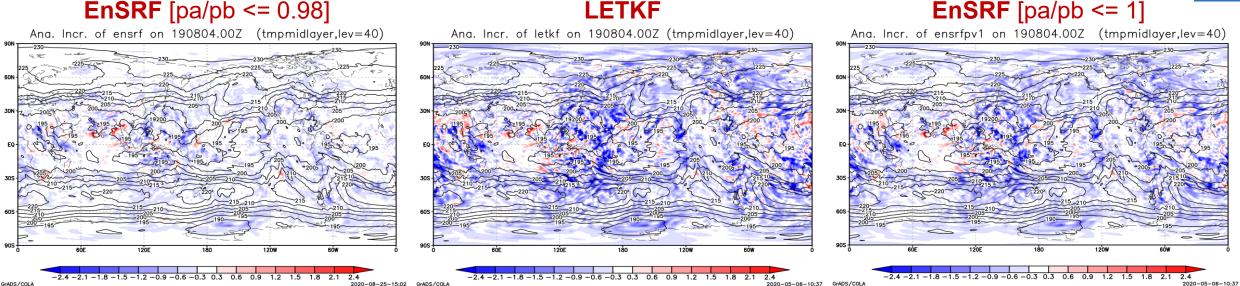
12

case #

24

Forecast Length (hr)

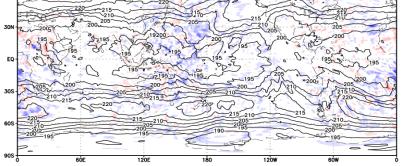
- No improvement on initial typhoon position
- No improvement on track forecast
- Slight improvement on intensity analysis and forecast
- Still no clear signals even if stratified by the "initial position errors" or "initial observed intensity"

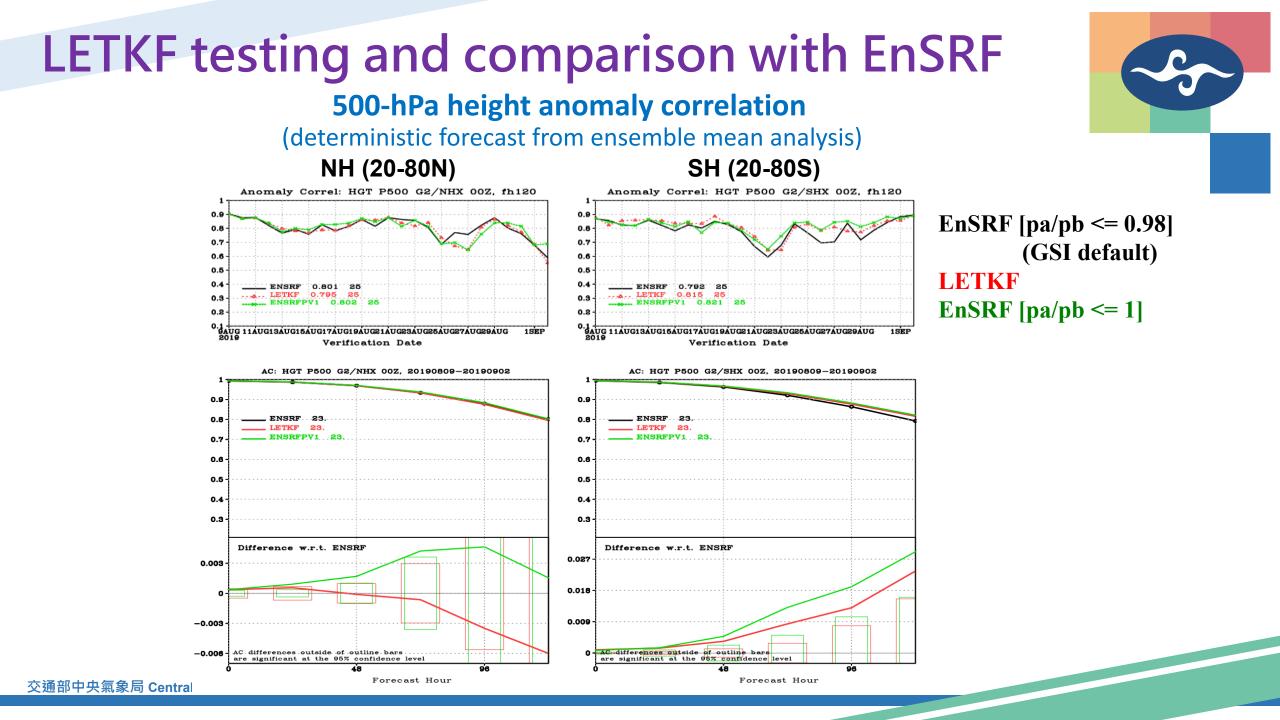

LETKF testing and comparison with EnSRF

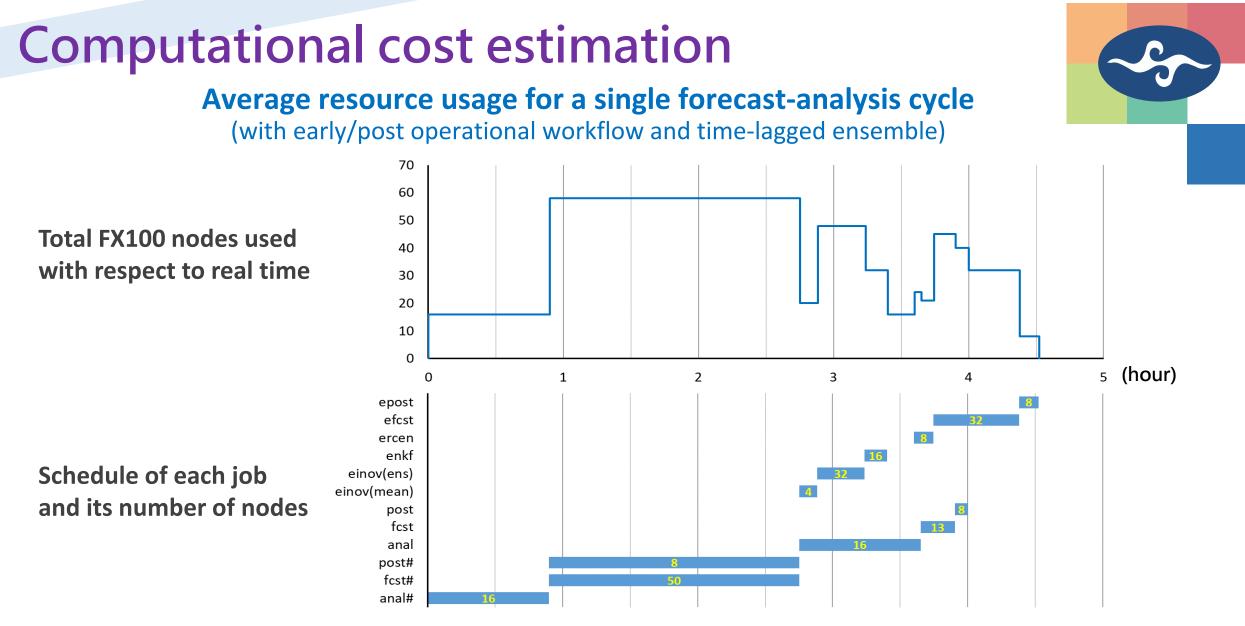
- In the ensemble subsystem of NCEP GSI, it uses a serial Ensemble Square-Root Filter (EnSRF; Whitaker and Hamill 2002) for the EnKF data assimilation.
- NCEP GSI also has a function to perform Local Ensemble Transform Kalman Filter (Hunt et al. 2007) analysis, but it has not yet been used in any operation.
- We have a plan to use LETKF for the ensemble component of the hybrid EnVar data assimilation, replacing the current EnSRF.
 - The first step is to compare the EnSRF and LETKF performance.
 - However, it is found that a tuning parameter **"paoverpb_thresh"** (threshold of ratio of predicted analysis error variance over background error variance) is critical to this EnSRF vs. LETKF comparison.

LETKF testing and comparison with EnSRF

Analysis increment in one cycle (temperature at model level #40)


EnSRF [pa/pb <= 0.98]


LETKF


The default setting of "paoverpb thresh" in GSI is 0.98, which causes about 78% observations to be discarded (72%, 56%, 85% for conventional, RO, radiance data, respectively). LETKF – EnSRF [pa/pb <= 1]

Ana. diff of letkf-ensrfpv1 on 190804.00Z (tmpmidlayer,lev=40)

交通部中央氣象局 Central Weather Bureau

Less than the current CWBGFS resource usage!

Operational schedule

2018/12 Near-realtime forecast from NCEP analysis (5-day with a nested tile) 2020 Q4 Near-realtime cycled data assimilation and forecast (10-day+)

2021 Q2–Q3? Start operational implementation on the new HPC

2021 Q4? Operation on the new HPC (replacing CWBGFS)

Self-maintained by the research team

Work withMaintained byoperational teamthe operational team

交通部中央氣象局 Central Weather Bureau

Collaboration with research community

• Maintain a code repository (CWB-localized FV3GFS, with DA) which is easy to use for research

₩ GitLab Projects Groups	Snippets Help	Search or jump to	۹ 😨	Sign in / Registe							
F fv3gfs-cwb	FV3 > fv3gfs-cwb > Details										
Project overview Details	F fv3gfs-cwb (Project ID: 19	9		🖈 Star 1							
Activity Releases	- ◆ 420 Commits	es 🖉 15 Tags 🗈 4.2 GB Files 🗟 4.3 GB Storage 3gfs superstructure in CWB									
Repository Issues 34	develop v fv3g	fs-cwb	History Find file	Clone Y							
Merge Requests 3	Merge branch 'hotfix/ Guo-Yuan Lien authore			1ba732d4 🔓							
Analytics	README CHANGELC	DG III No license. All rights reserved									
🖞 Wiki	Name	Last commit		Last update							
Snippets	GRID/cdo_gridfile	Complete 3DVar DA cycle with test case 'C96T_CYC' and	Complete 3DVar DA cycle with test case 'C96T_CYC' and 'C96T_CYC_FIRST'								
8 Members	🖨 etc	For the time-lagged ensemble function, add fault-toleran	it design to automati	2 weeks ago							
D Members	Dexec Update 'fv3gfs.fx10.x' and 'fv3gfs.fx10.x' executables										
	Add 'job/postjob100_merged' job script for nemsio -> grib2 post-processing										
	🖨 job	For the time-lagged ensemble function, add fault-toleran	t design to automati	2 weeks ago							
	a modulefiles	Add complete 'enkf_chgres_recenter.fd' source code unde	er 'sorc/'	6 months ago							
	Scripts	Add 'exglobal_enkf_post_fv3gfs.sh.ecf' NCEP script		1 year ago							
	Sorc	Merge branch 'hotfix/2.0.2' into develop		3 days ago							
≪ Collapse sidebar	tools	Correct the data clean-up function for hybrid EnVar expe	decide collections for	2 weeks ago							

("fv3gfs-cwb" project on CWB internal GitLab website)

Ongoing collaborations:

- RCEC (Academia Sinica) (許晃雄、杜佳穎): Unified model for weather-to-climate simulation
- NCU (黃清勇、楊舒芝、陳舒雅): Typhoon simulation and data assimilation studies

Future plan on FV3GFS data assimilation

- Improvement of LETKF core (computational efficiency, localization, ...)
- Improvement of satellite DA in LETKF
- Implementation and evaluation of hybrid gain DA method
- Ensemble Forecast Sensitivity to Observation Impact (EFSOI)
- FORMOSAT-7 RO data assimilation
- Himawari-8 IR radiance assimilation
- (Far future?) Nested-domain DA

- CWB has mostly completed porting and localization of the NCEP FV3GFS–GSI global NWP system, for operation and research.
- An early test has shown significantly better synoptic forecast skills than the current CWBGFS operational system.
- A number of research and development work is going on, such as time-lagged ensemble, LETKF testing, ... etc.
- Operation schedule:
 - 2020 Q4 : Self-maintained near-realtime cycled data assimilation and forecast
 - 2021 Q4(?) : Operation on the new HPC (replacing CWBGFS)
- Several collaborations with Taiwan's research community have been initiated, and hope to see more in the future.