

Long-Term Assessment of the Reflectivity Biases and Wet-Radome Effect in Operational S-band Dual-Polarimetric Radar (RCWF) in northern Taiwan

Jui Le Loh, Wei-Yu Chang, Hsiu-Wei Hsu, Yu-Chieng Liou

Pin-Fang Lin, Pao-Liang

Department of Atmospheric Sciences, National Central University

Central Weather Bureau

Introduction

- The radar measurements → used to monitor precipitation systems & estimate the rainfall rate.
- The measurements of radar
 - Contain errors: non-meteorological echoes, bright band contamination, calibration biases of Z_{HH} & Z_{DR} & etc.
 - May degrade by the attenuation, system bias, & wetradome effect (WRE).
- Vivekanandan et al. $(2003) \rightarrow 1$ dB bias in Z_{HH} produces 18% bias in Z_{HH} -R relation (case NEXRAD).

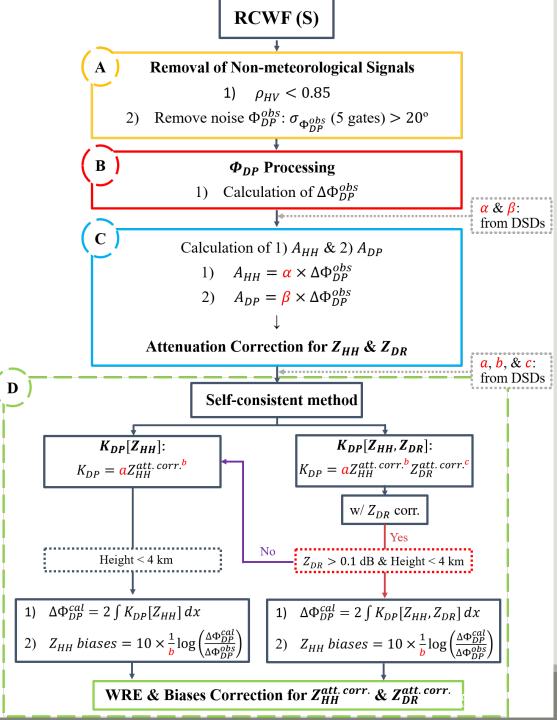
Objectives

- To analyze/investigate:
 - 1. The calibration approach by different selfconsistent methods for RCWF \rightarrow accurately calibrating the $Z_{HH} \& Z_{DR}$ measurements.
 - 2. The long-term assessment of Z_{HH} biases from RCWF.
 - 3. The impacts/characteristics of WRE in RCWF.

Datasets

				26 Wufenshan
Datasets	Precipitation types	Periods	Avg. Temp. (°C)	25.5- 25- NCU CITENSIAN WD RCWF
RCWF (in 2017)	All	Jan – Dec	20	24.5-
	Winter (DJF)	Dec – Feb	18	24-
	Spring (MA)	Mac – Apr	20	23.5
	Mei-yu (MJ)	May – Jun	27	
	Summer (JAS)	Jul – Sept	30	23-
	Typhoon	July 28-30	30	22.5-
	Autumn (ON)	Oct – Nov	24	22-
JWD	-	2005 – 2015	-	21.5 119.5 120 120.5 121 121.5 122 122.5 123 0 200 400 600 800 1000 1200 1400

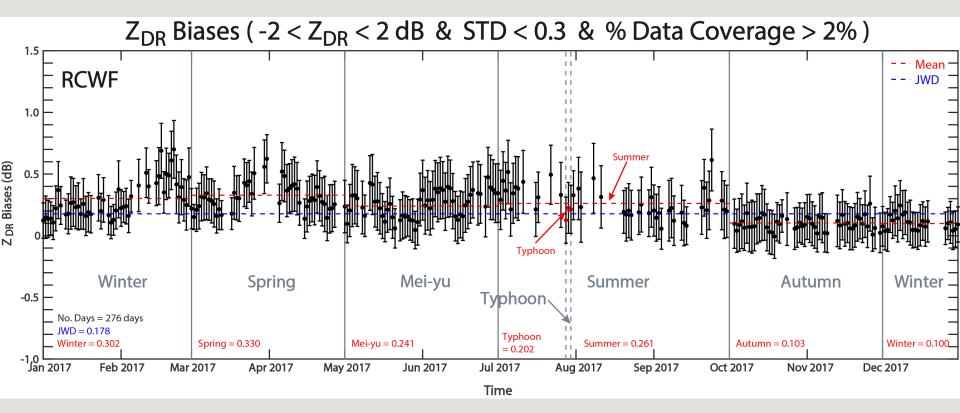
 ρ_{HV} : Co-polar correlation coefficient. $\Delta \Phi_{DP}^{obs}$: Twice the sum of K_{DP} (specific differential phase) over a specified range.


A_{HH} (A_{DP}) : Specific horizontal (differential) reflectivity.

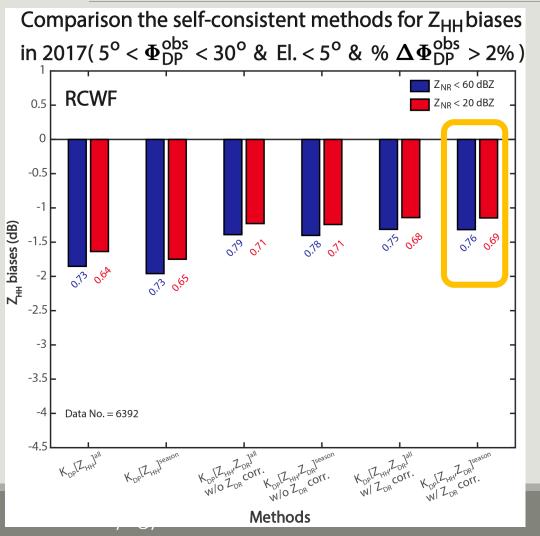
Coeffs. for α , β , a, b, & c:

Diff. seasons & avg. temp.1) All 2) Season

Z_{DR} biases calculation:

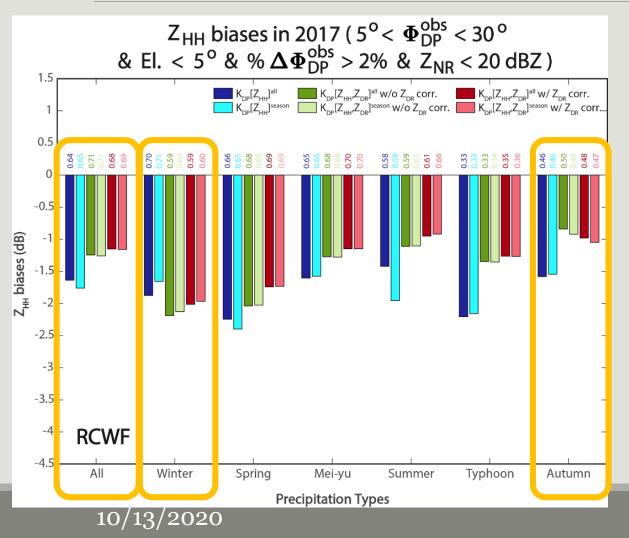

1) $15 < Z_{HH} < 25 \text{ dBZ}$ 2) Height < 3.5 km 3) $\rho_{HV} > 0.98$ 4) $\Delta \Phi_{DP}^{obs} < 15^{\circ}$

Results: Calibration of Z_{DR}



1) Z_{DR} biases $\rightarrow \sim$ consistent (Winter 0.12 dB, Spring 0.15 dB, Mei-yu 0.08 dB, Summer 0.08 dB, Typhoon 0.02 dB, Autumn -0.07 dB)

Results: Calibration of Z_{HH}


Z_{NR} : Near-radar reflectivity within 10 km El. : Elevation angles

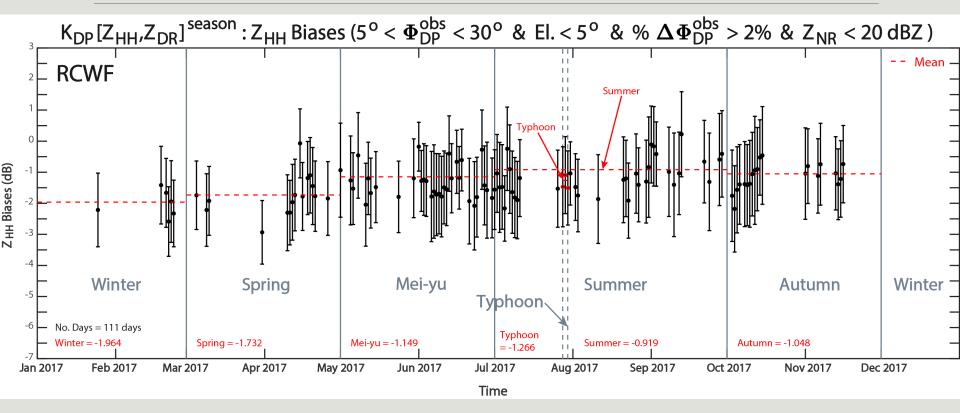
- 1) $Z_{NR} > 20 \text{ dBZ}$ for all methods showed higher mean bias \rightarrow WRE
- 2) STD for all methods is similar ~0.7
- 3) K_{DP} [Z_{HH}, Z_{DR}]^{season} w/ Z_{DR} corr. has lowest mean bias → best methods to calibrate the Z_{HH}

Results: Calibration of Z_{HH}

Systematic biases

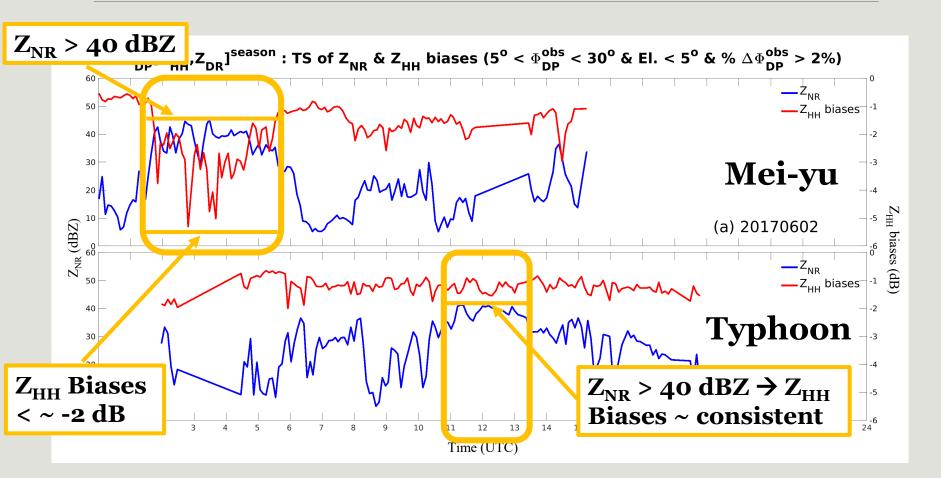
 K_{DP} [Z_{HH}, Z_{DR}]^{season} w/ Z_{DR} corr. has lowest mean bias except for Winter & Autumn.

2) **All:**

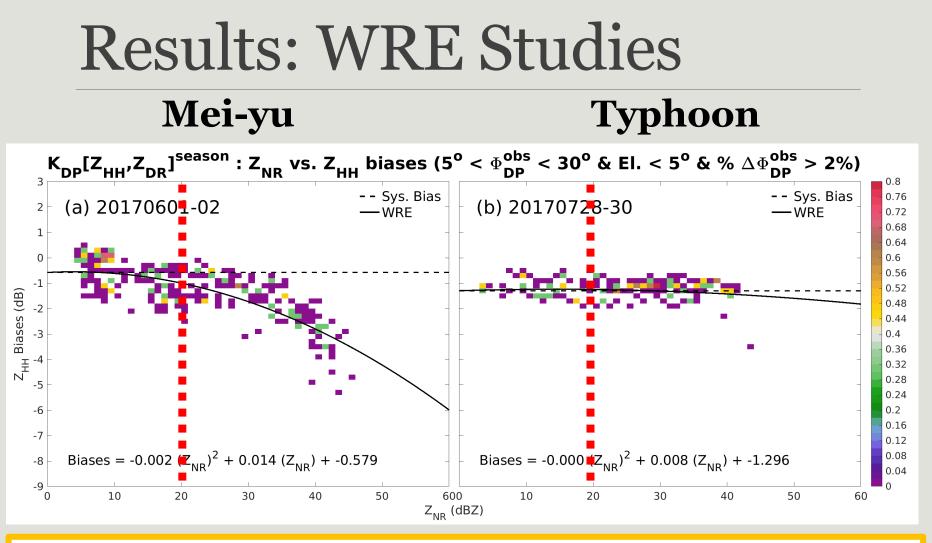

 $\begin{array}{c} \mathbf{K}_{\mathbf{DP}} \ [\mathbf{Z}_{\mathbf{HH}}, \mathbf{Z}_{\mathbf{DR}}]^{\text{season}} \\ \mathbf{w} / \mathbf{Z}_{\mathbf{DR}} \ \mathbf{corr.} \rightarrow \\ \text{calibrate well among 6} \\ \text{different methods.} \end{array}$

Dark: Coeffs. → All Light: Coeffs. → Season

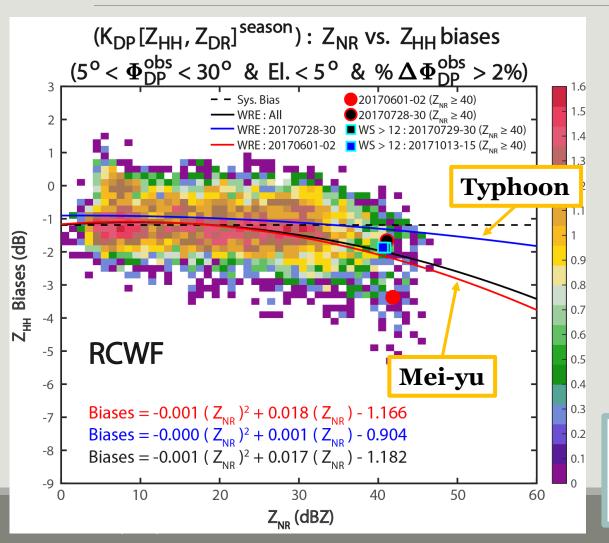
Results: Calibration of Z_{HH}



1) Z_{HH} biases $\rightarrow \sim$ consistent (Winter -1.96 dB, Spring -1.73 dB, Mei-yu -1.15 dB, Summer -1.23 dB, Typhoon -0.92 dB, Autumn -1.05 dB)



Results: WRE Studies

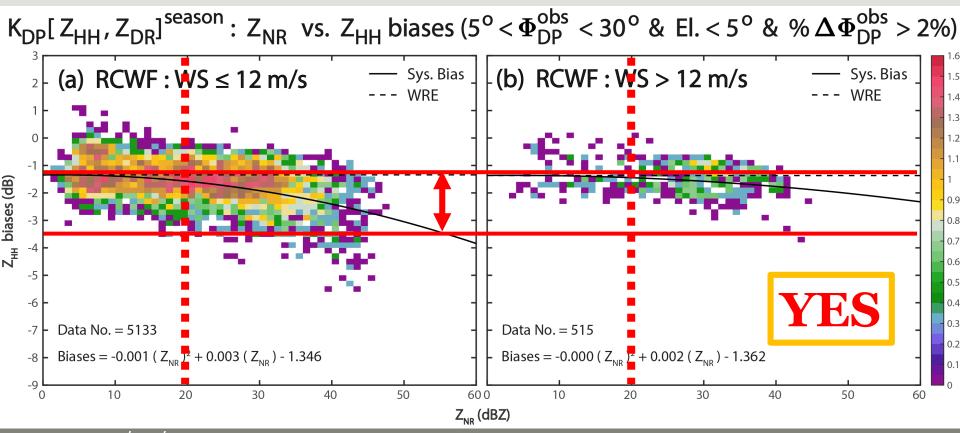


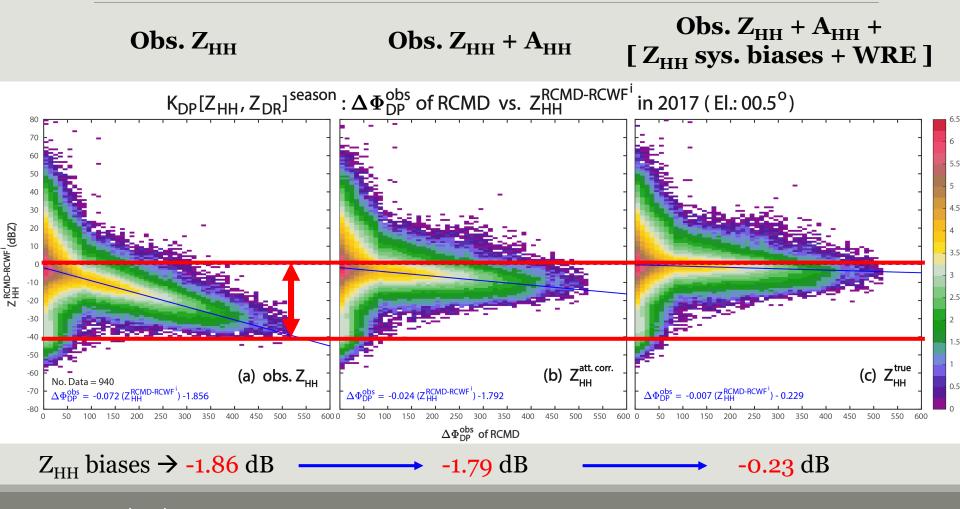
Wind Speed (WS) → factors that influences the WRE ?

Results: WRE Studies

- 1) The WRE \rightarrow quadratic poly-fitted eq.
- 2) Typhoon case (20170728-30) has smaller mean bias than Meiyu case (20170601-02)
- 3) Case 20171013-15 (WS > 12 m/s) showed similar result with typhoon case

4) WRE \rightarrow affected by WS


Mei-yu : 20170601-02 Typhoon : 20170728-30 WS > 12 : 20171013-15



Results: WRE Studies

Wind Speed (WS) → factors that influences the WRE ?

Results: Validation with RCMD

Conclusions

- Calibration for $Z_{HH} \& Z_{DR} \rightarrow Important!$
 - $Z_{HH} \& Z_{DR} \rightarrow$ affected by WRE, systematic, & attenuation biases
 - Systematic biases \rightarrow consistent (~ -1.2 dB)
- Among the 6 diff. self-consistent methods: $K_{DP} [Z_{HH}, Z_{DR}]^{season} w/Z_{DR} corr. \rightarrow$ calibrated well the results
- WRE:
 - Additional underestimations in Z_{HH} up to 6 dB
 - WS \rightarrow factor to influence the WRE
 - $Z_{DR} \rightarrow$ influence the WRE

Manuscript: Long-Term Assessment of the Reflectivity Biases and Wet-Radome Effect in Collocated Operational S- and C-band Dual-Polarimetric Radars in northern Taiwan (in prep.)

Thanks for listening!

Manuscript: Long-Term Assessment of the Reflectivity Biases and Wet-Radome Effect in Collocated Operational S- and C-band Dual-Polarimetric Radars in northern Taiwan (in prep.)

Methods: Coeffs. from NCU JWD

Precipitation	$A_{HH} = \alpha K_{DP}$	$A_{HH} = \beta K_{DP}$	$K_{DP} = a Z_{HH}^b$		$K_{DP} = a Z^b_{HH} b Z^c_{DR}$		
types [Avg. Temp. (°C)]	α (x 10 ⁻²)	β (x 10 ⁻³)	a (x 10 ⁻⁵)	b (x 10 ⁻¹)	a (x 10 ⁻⁵)	b	c (x 10 ⁻¹)
All [20]	1.97	2.30	5.52	8.94	1.85	1.01	-5.76
Winter (DJF) [18]	2.70	2.30	5.12	9.06	1.84	1.01	-4.94
Spring (MA) [20]	2.09	2.30	5.76	8.86	1.80	1.01	-5.73
Mei-yu (MJ) [27]	2.09	2.00	5.54	8.95	1.83	1.01	-5.84
Summer (JAS) [30]	1.54	1.90	6.37	8.69	1.88	1.01	-6.39
Typhoon [30]	1.55	1.80	5.51	8.96	1.92	1.00	-5.83
Autumn (ON) [24]	1.89	2.10	5.49	8.96	1.96	1.00	-5.20