#### The Characteristics of Tropical Cyclone Formation in an Environment with Strong Low Frequency Vorticity in the Western North Pacific





#### Y-H Hsieh

Department of Atmospheric Sciences, National Taiwan University

## ECMWF Model errors (RMSE) in WNP (0-30 °N, 100-180 °E) during 2008-2009













### **Background 850-hPa vorticity of pre-TC disturbances**

The 10-day\* low pass and high pass filters are applied to NCEP\_FNL (2000-2009) data to obtained low/high pass filtered winds. - (\* Wu et al., 2013)

Use filtered winds to compute 850-hPa mean vorticity within 5° radius of the pre-TC disturbance in the WNP at 24-48h before the formation of TC (Vmax ~ 25kt).





The convection process (cumulus scheme) is <u>not the</u> <u>dominant factor</u> for TC formation in an environment with large low-frequency vorticity (HTC, e.g. DUJUAN), but very important if the environmental low-frequency vorticity is small (LTC, e.g. NURI).

-Hsieh et al., 2017, MWR

| Experiments | HHTC-formation rate<br>(%) in all<br>simulations/forecasts | LLTC-formation rate<br>(%) in all<br>simulations/forecasts | Average Track error<br>at T <sub>0</sub><br>(km)   |
|-------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|
| Ctl_Exp     | 100 %                                                      | 75 %                                                       | 196, 327, 501,<br>620<br>(-48, -72,-96, -120 hr)   |
| Sen_Exp     | 100 %                                                      | 35.7 %                                                     | 330, 478, 671,<br>1013<br>(-48, -72, -96, -120 hr) |
| TIGGE       | 89.2%<br>Model dep                                         | 38.1%                                                      | 288, 436, 522,<br>695<br>(-48, -72,-96, -120 hr)   |
|             |                                                            |                                                            |                                                    |

Results show that all simulations can reproduce the TC formation process in an environment with large 850-hPa low-frequency vorticity, even with the high-frequency parts being removed in initial conditions.

# **Time-series of simulated vorticity (1.5°)**



High-freq. part of vorticity increases quickly around the center







Obs.

• The numerical model is more capable of simulating the TC formation process for TCs formed in monsoon-related environments -Hsieh et al., 2017, MWR

# In our EXPs (Ctl\_Exp, Sen\_Exp)

- The capability of the WRF model to simulate HHTC formation is not sensitive to the choice of cumulus scheme, and also not sensitive to the <u>high-frequency environment</u> in initial conditions.
- The high-frequency systems could determine the position of an initial vortex, which decide the value of vorticity tendency and affect the strength of HHTC in simulations.
- TC formation can be expected (~5 days before formation) under specific environments (monsoon-related).
  → Importance of environment > disturbance

- Hsieh et al., submitted to GRL

## ECMWF Model errors (RMSE) in WNP (0-30 °N, 100-180 °E) during 2008-2009

| -                                                                            | TC events                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                              |                                                                                                                                                                              |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | <b>Correlation</b><br><b>coefficient</b>                                                                                                                                                                                                                                                                     | Total<br>Vorticity                                                                                                                                                           | Low-<br>frequency<br>Vorticity                                                                                                                                               |
|                                                                              | RMSE (+24 hr)                                                                                                                                                                                                                                                                                                | 0.67                                                                                                                                                                         | 0.51                                                                                                                                                                         |
|                                                                              | RMSE (+48 hr)                                                                                                                                                                                                                                                                                                | 0.66                                                                                                                                                                         | 0.53                                                                                                                                                                         |
| A. ANA                                                                       | RMSE (+72 hr)                                                                                                                                                                                                                                                                                                | 0.68                                                                                                                                                                         | 0.55                                                                                                                                                                         |
|                                                                              | RMSE (+96 hr)                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                         | 0.57                                                                                                                                                                         |
|                                                                              | RMSE (+120 hr)                                                                                                                                                                                                                                                                                               | 0.75                                                                                                                                                                         | 0.59                                                                                                                                                                         |
| 00Z06JAN2008<br>00Z21JAN2008<br>00Z05FEB2008<br>00Z20FEB2008<br>00Z20FEB2008 | 00Z21MAR2008<br>00Z05APR2008<br>00Z20APR2008<br>00Z05MAY2008<br>00Z04JUN2008<br>00Z14JUN2008<br>00Z14JUL2008<br>00Z14JUL2008<br>00Z14JUL2008<br>00Z14JUL2008<br>00Z13AUG2008<br>00Z18AUG2008<br>00Z17SEP2008<br>00Z17SEP2008<br>00Z17SEP2008<br>00Z17SEP2008<br>00Z17SEP2008<br>00Z17SEP2008<br>00Z17SEP2008 | 00Z16DEC2008<br>00Z31DEC2008<br>00Z31DEC2008<br>00Z15JAN2009<br>00Z14FEB2009<br>00Z16MAR2009<br>00Z16MAR2009<br>00Z16MAR2009<br>00Z15APR2009<br>00Z15APR2009<br>00Z15MAY2009 | 00Z30MAY2009<br>00Z14JUN2009<br>00Z14JUN2009<br>00Z14JUL2009<br>00Z13AUG2009<br>00Z13AUG2009<br>00Z12SEP2009<br>00Z12SEP2009<br>00Z12OCT2009<br>00Z11NOV2009<br>00Z11DEC2009 |

# Thanks for your attention

- Hsieh, Y.-H, C.-S. Lee, and C.-H. Sui, 2017: A Study on the Influences of Low-Frequency Vorticity on Tropical Cyclone Formation in the Western North Pacific. *Mon. Wea. Rev.*, **145**, 4151–4169
- Hsieh, Y.-H, C.-S. Lee, and H.-F. Teng, 2019: The Characteristics of Tropical Cyclone Formation in an Environment with Large Low-Level Low-Frequency Vorticity in the Western North Pacific. *(Submitted to GRL)*

Hsieh, Yi-Huan Postdoctoral Fellow Department of Atmospheric Science National Taiwan University, TAIWAN E-mail: coldfishball@gmail.com