

Pacific climate variability and the ENSO prediction

Yu-heng Tseng¹ Han-ching Chen² ¹Institute of Oceanography, National Taiwan University, Taiwan ²U. Hawaii at Monoa, USA

Acknowledgments: Ruigiang Ding, Zeng-Zhen Hu, Jiangping Li, Art Miller

The dominant surface pattern and variability in the North Pacific-1st mode

The dominant surface pattern and variability in the North Pacific-2nd mode

The covariability mode of SLP and SST anomalies from the CEOF2 analysis

Links between the two dominant CEOF modes

• PC2 leads EMI by 5 months

•

PC2 (NPO/VM): important ENSO precursor

Hindcast skills

Multi-model ensemble mean skill (Barnston et al., 2012)

/

Lead time	Data	Year	Correlation		Normalized RMSEs	
	source		nEPI	WWX	nEPI	WWV
four-month	TAO	1994-2015	0.75	0,70	0.66	0.72
six-month	TAO	1994-2015	0.67	0.62	0.75	0.78
	TAO	2002-2011	0.59 (0.42)		0.81	
	GODAS	1980-2015	0.64 🖌		0.77	
	GODAS	1981-2010	0.68 (0.65)		0.73	
eight-month	TAO	1994-2015	0.57	0.49	0.82	0.87
	GODAS	1980-2015	0.58		0.79	

Percent correct of six-month ENSO forecast

ENSO index threshold	Percent correct 1994-2015 (TAO)	Percent correct 1980-2015 (GODAS)
+ Niño3.4 index	100% (67%)	68%
– Niño3.4 index	83% (75%)	87%
upper tercile Niño3.4 index (El Niño)	86% (57%)	73%
lower tercile Niño3.4 index (La Niña)	86% (71%)	82%
(Larson and Kirtman, 2014)	\uparrow	AL STREET
	Using WWV	

IRI ENSO plume prediction in July

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

3-mon-averaged SST (shaded), SLP (contours) and surface wind anomalies in 2014.

Warm Blob and El Niño are related!

El Niño 1965/66, 1972/73,1982/83,1986/8 1991/92, 1997/98, 2002/03, 2009	87, 1987/88, 9/10, 2015/16
La Niña 1970/71, 1973/74, 1975/76, 1988 1999/00, 2007/08, 2010/11	8/89, 1998/99 .

60N

動 國立臺灣大學 海洋研究所 Institute of Oceanography, National Taiwan University Extra-tropical forcing

$nEPI_{EX} = -[(-nSLP_1 + nSLP_2) + (sSLP_1 + sSLP_2)]$

The boreal winter subtropical and extratropical SLPa over both the North/South Pacific are significantly related to the ENSO state in the following boreal winter

1981-2010 Multi-model ensemble mean skill: 0.65 6-month lead

Hindcast skills (1980-2018)

	Correlation pentad (monthly)				
Lead time	nEPI (WWV+OA+EX)	nEPI (WWV+OA)	WWV		
Six-month	0.65 (0.71)	0.59 (0.67)	0.55 (0.57)		
Eight-month	0.63 (0.67)	0.52 (0.58)	0.48 (0.51)		
Ten-month	0.57 (0.60)	0.44 (0.49)	0.41 (0.44)		

For $nEPI_{(WWV+OA+EX)}$, Nino 3.4 SSTa hindcast skill based on the linear regression model is generally better in terms of the monthly correlation.

Also, significantly increased for 10-month forecast

Conclusion

- Two dominant modes of NPCV are linked
 - ENSO/PDO: the zonal variability in tropic and mid-latitude
 - NPO/VM: a footprint of the meridional variability through the tropic-extratropical teleconnection (precursor of ENSO/PDO)
- Hindcast skill of SSTa is generally better than the commonly used WWV index and all other prediction models in terms of the monthly correlation
- WWV propagation+O-A coupling greatly improves the ENSO prediction skill
- 6 to 10 months lead time hindcast skill can be even enhanced by further incorporating the extratropical North/South Pacific forcing (Spring barrier may not be an issue)

- Ding, R., Li, J., Tseng, Y.H., Sun, C. and Zheng F. (2017b), Linking a sea level pressure anomaly dipole over the North America to the central Pacific El Niño, *Clim. Dyn.*. 49, 1321–1339.
- Ding, R., Li, J., Tseng, Y.H., Sun, C. and Xie F. (2017a), Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events, *J. Geophys. Res.-atmos,* 122, 279–298.
- Ding, R., Tseng, Y.H., Ha, K.J., Lee, J.Y. and Li, J. (2016), Interdecadal change in the lagged relationship between the Pacific-South American pattern and ENSO, *Clim. Dyn.*, 47, 2867–2884.
- Chen, H.C., Sui, C.H., Tseng, Y.H. and Huang, B.H. (2015), An analysis of the linkage of Pacific subtropical cells with the Recharge-Discharge processes in ENSO evolution, *J. Clim.*, 28, 3786–3805.
- Ding, R., Li, J., Tseng, Y.H., Sun, C. and Guo, Y. (2015), The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO, *J. Geophys. Res.*, 120, 27–45.
- Ding, R., Li, J., Tseng, Y.H. and Ruan, C. (2015), Influence of the North Pacific Victoria mode on the Pacific ITC2 summer precipitation, *J. Geophys. Res.*, 120, 964–979.
- Ding, R., Li, J. and Tseng, Y.H. (2015), The impact of south Pacific extratropical forcing on ENSO and comparisons with the North Pacific, *Clim. Dyn.*, 44, 2017–2034.
- Hu, Z.Z., Humar, A., Zhu, J., Huang, B., Tseng, Y.H., Wang, X. (2017a), On the shortening of the lead time of ocean warm water volume to ENSO SST since 2000 *Sci. Rep.*, 7, 4294.
- Hu, Z.Z., Huang, B., Tseng. Y.H., Wang, W., Kumar, A. Zhu, J. and Jha, B. (2017b), Does vertical temperature gradient of the atmosphere matter for El Nino development? *Clim. Dyn.*, 48, 1413–1429.
- Miller, A. J. et al. (2017), Coupled ocean-atmosphere modeling and predictions, J. Marine Res., 75, 361-402.
- Tseng, Y.H., Ding, R. and Huang, X.-M. (2017a), The warm blob in the northeastern Pacific-the bridge leading to the 2015/16 El Niño, *Environ. Res. Lett.*, 12, 054019.
- Tseng, Y.H., Hu, Z.Z., Ding, R. and Chen, H.C. (2017b), An ENSO-prediction approach based on ocean conditions and ocean-atmosphere coupling, *Clim. Dyn.* 48, 2025–2044.

