臺灣極端暴潮案例模擬與潛在威脅性分析 蔡育霖¹ 吳祚任¹ 滕春慈² 朱啟豪² 葉天降² 莊美惠¹ 林君蔚¹ 國立中央大學水文與海洋科學研究所¹ 中央氣象局²

摘 要

2013 年強烈颱風海燕 (Typhoon Haiyan) 誘發之風暴潮聲指律霍造成重大傷亡,臺灣與菲律霍同處於西 北太平洋和南海交界之颱風高度密度區域,政府應重視臺灣地區潛在強烈颱風造成暴潮威脅與沿海地區 居民生命財產安全,同時建立一套功能完整、計算快速且精準之風暴潮溢淹預報速算系統。本研究以 COMCOT 非線性多重網絡海嘯模式 (Cornel Multi-grid Coupled Tsunami Model)為基礎,發展臺灣近岸 海域之多尺度暴潮溢淹預系統 COMCOT-SS,並協助中央氣象局進行颱風期間之暴潮預報。COMCOT-SS 可利用大尺度計算域涵蓋風暴潮傳遞完整週期,同時兼顧近岸尺度溢淹溯上模擬,除導入理想颱風模 式外,更能結合氣象局105年度上線作業之TWRF2.0模式氣象場,反應颱風結構變化,並且結合TPXO 全球天文潮模式。COMCOT-SS 以非線性淺水波方程式配合動態巢狀網格,解析不同尺度之長波傳遞, 以移動邊界法(Moving Boundary Scheme)計算溢淹範圍,並利用 OpenMP(Open-Multi-Processing)進 行多執行緒平行化修改,滿足預報時效。本極端風暴潮案例模擬選用 2016 年莫蘭蒂颱風(Typhoon Meranti) 之暴潮事件進行分析驗證,並與觀測資料進行比對,研究成果指出,在基隆、頭城、南灣、蘇澳、高雄 和蟳廣嘴等潮位站,模式可掌握風暴潮潮高、潮高到時及其週期,突顯本模式高準確度。本研究發展之 COMCOT 預報系統,亦可提供預報 00-12 小時、12-24 小時、24-36 小時及 36-48 小時之最大暴潮總水位 (Maximum Storm Tides)、最大潮汐水位(Maximum Tides)和最大風暴潮(Maximum Storm Surges), 預報產品可即時提供預報員和災防單位作為暴潮警戒評估,冀望在颱風侵襲期間,沿海地區居民能有足 夠時間準備,降低可能遭受之災害。

關鍵字:COMCOT暴潮溢淹預報系統、TWRF大氣模式結合、TPXO全球天文潮模式結合、近岸溢裺計算。

一、前言

在未來全球暖化與極端颱風事件可能增加之情境下, 風暴潮於近岸地區所造成之溢奄為現今災害防治之重點。 風暴潮由颱風之壓力梯度和風剪力所驅動,因此颱風氣象 場之正確性直接影響模擬結果;風暴潮於近岸地區之溯上 過程,則受到地形、地表摩擦力和潮汐交互作用影響,對 於數值模式為一大挑戰,特別是發展兼顧準確度和效能之 速算系統。

國內學者對於風暴潮數值方法之研究,早期可追溯至 1970年代末期;李賢文(1984、1989)跳脫過去以統計及 經驗之分析方法,改以流體動力學方程式建立臺灣海峽沿 岸之暴潮數值模式,並於1984年完成臺灣問圍海域風暴 潮數值模式之建立;劉尚孔(1987)發展出三維風暴潮數 值預報模式,並考慮到溫度及鹽度的變化,然而該模式侷 限於特定區域之模擬;黃榮鑑等(1995)利用邊界調協座 標轉換系統建立半隱式解之三維數值環流模式,用以討論 河口及海岸受風暴潮之影響,其水位堆升與海流變化之情 況;許泰文等(1997)利用有限元素法求解二維風暴潮模 式,並應用於預測臺灣佔海區域之暴潮偏差。近年來仍有 許多學者在數值模式上進行研究,邱銘達等(2006)利用 POM (Princeton Ocean Model)模式,針對臺灣海域進行颱 風暴潮推算,並分析不同風阻力參數對暴潮計算之影響; 于嘉順等(2005)以多尺度暴潮模式進行臺灣海域之暴潮 水位模擬。

除臺灣外,許多受風暴潮災害影響之國家,也逐漸發展適合該國使用之風暴潮模式;Jelesnianski et al. (1992)為美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration, NOAA)建立SLOSH模式(Sea, Lake, and Overland Surges from Hurricanes),該模式可於卡氏座標(Cartesian Coordinate)及極座標(Polar Coordinate)下進行風暴潮模擬及預警,同時以移動邊界法(Moving Boundary Scheme)推算暴潮溢淹範圍。同一時間,Luettich et al. (1992)發展了ADCIRC(ADvanced CIRCulation)數值模式,該模式可於非均勻網格下求解深度積分之淺水波方程式,Westerink et al. (2008)則應用ADCIRC 模式於美國路易斯安那州南部(Southern Louisiana)墨西哥灣附近,並以颶風貝絲緹(Hurricane Besty)和安得烈(Hurricane Andrew)作模式校驗。Flater(1993)以深度積分之方程式

發展風暴潮模式,並應用於北孟加拉灣地區(Northern Bay of Bengal) 1991年之歷史風暴潮事件中。

上述文獻回顧中之風暴潮數值方法皆求解深度積分之 淺水波方程式(Pugh, 1987)。換言之,風暴潮膜式在1980 年代後至今,為兼顧效能和準確性,多以淺水波方程式加 上颱風氣象力之驅動,同時導入潮汐邊界條件,求解或預 報沿海地區風暴潮水位和溢淹範圍。

本研究之目的為發展計算精準及具有高速運算效能之 風暴潮模式,耦合全球潮汐模式和區域大氣模式,並能推 算沿海地區之風暴潮溢奄範圍(Inundation Area),以提供 預報與災害防治單位決策之用。因此,本研究以康乃爾大 學土木與環境工程學系所發展成熟之非線性 COMCOT 海 嘯模式(Comell Multi-grid Coupled Tsunami Model)為基礎 發展風暴潮模式(Liu et al., 1995),並且利用多重巢狀網 格系統(Multi-grid System)與數值移動邊界法(Moving Boundary Scheme),建構深海之大網格系統與近岸之高解 析度網格系統,同時計算遠洋及近海之風暴潮傳遞以及近 岸地區之風暴潮溢淹範圍。

二、研究方法

2.1 風暴潮模式介紹

本研究以 COMCOT 海嘯模式為基礎,加入颱風氣象 力發展 COMCOT 風暴潮模式,以淺水波方程式解析風暴 潮生成、傳播以及近岸溯上之完整歷程。當風暴潮傳遞至 近岸,水深變淺且波長變短時,非線性效應顯著,因此非 線性對流項和底床摩擦不可忽略,非線性戔水波方程式較 為適用。

茲列出非線性球座標系統下之淺水波方程式,如下:

$$\frac{\partial \eta}{\partial t} + \frac{1}{R\cos\varphi} \left\{ \frac{\partial P}{\partial \psi} + \frac{\partial}{\partial \varphi} (\cos\varphi \cdot Q) \right\} = 0$$
(1)

$$\frac{\partial P}{\partial t} + \frac{1}{R\cos\varphi} \frac{\partial}{\partial\psi} \left(\frac{P^2}{H}\right) + \frac{1}{R} \frac{\partial}{\partial\varphi} \left(\frac{PQ}{H}\right) + \frac{gH}{R\cos\varphi} \frac{\partial\eta}{\partial\psi} - fQ + F_{\psi}^b$$

$$= \frac{H}{R\cos\varphi} \frac{\partial P_a}{\partial\psi} + \frac{F_{\psi}^s}{F_{\psi}^s}$$
(2)

$$= -\frac{1}{\rho_{w}R\cos\varphi}\frac{\partial}{\partial\psi} + \frac{1}{\rho_{w}}$$

$$\frac{\partial Q}{\partial t} + \frac{1}{R\cos\varphi}\frac{\partial}{\partial\psi}\left(\frac{PQ}{H}\right) + \frac{1}{R}\frac{\partial}{\partial\varphi}\left(\frac{Q^{2}}{H}\right)$$

$$+ \frac{gH}{R}\frac{\partial\eta}{\partial\varphi} + fP + F_{\varphi}^{b} \qquad (3)$$

$$= -\frac{H}{R}\frac{\partial P_{a}}{\partial\varphi} + \frac{F_{\varphi}^{s}}{Q}$$

$$-\frac{1}{\rho_{w}R}\frac{\partial\psi}{\partial\psi}+\frac{1}{\rho_{w}}$$

其中, t為時間, φ 為緯度, ψ 經度, P,Q 為體積通 量, η 為自由液面高程, h 為靜水深, H 為總水深 $(H=h+\eta)$, R 為地球半徑, f 為科氏力係數, F_{ψ}^{s} , F_{φ}^{s} 為風剪力, F_{ψ}^{b} , F_{φ}^{b} 分別為底床摩擦剪應力, ρ_{w} 為海水 密度及 P_{a} 為大氣壓力。

模擬中,底床摩擦剪應力以曼寧公式(Manning's Formula)表示,為:

$$F_{x} = gn^{2}H^{-\frac{7}{3}}P\sqrt{\left(P^{2} + Q^{2}\right)}$$
(4)

$$F_{y} = gn^{2}H^{-\frac{7}{3}}Q\sqrt{\left(P^{2}+Q^{2}\right)}$$
(5)

其中, n 為曼寧粗糙係數 (Manning's Roughness Coefficient),為一經驗常數,由流體所通過之不同介質底床之材料所決定。

2.2 理想颱風模式之耦合

颱風壓力場和風場可以透過理想颱風模式生成,針對 臺灣複雜之高山地形塗於颱風結構之影響,中央氣象局建 議之理想風場模式為:

$$P_a = P_c + (P_n - P_c) \exp\left[-\left(\frac{R_{\max}}{r}\right)^B\right]$$
(6)

$$V_{w} = 2 \cdot V_{\max} \cdot \frac{R_{\max} \cdot r}{R_{\max}^{2} + r^{2}}$$
(7)

建議峰值參數 B 值的經驗關係如下:

$$B = \frac{1}{P_n - P_c} \left(\frac{V_{\text{max}}}{5.375}\right)^2 \tag{8}$$

最大暴風半徑 R_{max} 則依據颱風中心壓力而有相對應 值,如下:

$$R_{\max} = \begin{cases} 42.6 - 0.86 \cdot (P_c - 990) & P_c \ge 990 \\ 51.0 - 0.84 \cdot (P_c - 980) & 980 \le P_c < 990 \\ 58.4 - 0.74 \cdot (P_c - 970) & 970 \le P_c < 980 \\ 63.0 - 0.46 \cdot (P_c - 970) & 960 \le P_c < 970 \\ 70.0 - 0.234 \cdot (P_c - 930) & 930 \le P_c < 960 \\ 80.0 - 0.167 \cdot (P_c - 870) & 870 \le P_c < 930 \\ 80.0 & P_c < 870 \end{cases}$$
(9)

其中, R_{\max} 為最大暴風半徑,單位:公里, P_c 為中心氣壓值,單位:毫巴。

對於海水和大氣之交互邊界效應,透過風剪力係數 C_d 來描述海水面之粗糙程度,隨不同風速而有相對應之 區間(Large and Pond, 1981, Powell, 2003),如下:

2.3 區域大氣模式之結合

有別於理想颱風模式,大氣模式之氣象場能考慮颱風結構受地形之影響與熱能傳輸改變,能提供暴潮模式較為接近真實颱風情況之資料。因此,本研究與目前氣象局所使用之大氣模式 TWRF 2.0 (Weather Research and Forecasting Model)進行結合。本研究結合 TWRF 2.0 模式 第1 層網格之6小時分析場資料,解析度為15公里,座標系統為藍伯特投影(Lambert Projection System),導入 COMCOT 暴潮模式前,需以內插方式提高解析度,並將座標系統自藍伯特座標轉至球座標系統。

2.4 全球天文潮模式之結合

風暴潮傳遞逢朝夕大潮或漲時對於近岸溢淹之影響加 深,不可忽略,因此風暴潮與天文潮之非線性交互作用也 必須被考慮。

本研究耦合俄勒岡州立大學(Oregon State University, OSU)所研發建置之全球天文潮模式TPXO,由邊界導入 潮汐作用力,並考慮八個主要分潮位(M2, S2, N2, K2, K1, O1, P1, Q1)、兩個長週期分潮位(Mf, Mm)和3個非線 性分潮位(M4, MS4, MN4),該模式以0.25 弧分之解析 度進行潮汐運算(Dushaw et al., 1997)。

本研究透過非颱風期間之天文潮比對進行校驗,並計 算模擬之天文潮與中央氣象局所提供之調和分析資料和觀 測資料之差異;經結十分析之結果,偏差量(Bias)小於0.1 公尺,方均根誤差(RMS)小於0.3公尺,顯示模擬之天 文潮相當準確,相聯細節將於研討會中呈現。

三、歷史案例分析

3.1 2016 年莫蘭蒂颱風介紹

強烈颱風莫蘭蒂 (Severe Typhoon Meranti)為2016年 太平洋颱風季第14個被命名的風暴。莫蘭蒂是2016年西 北太平洋最強的熱帶氣旋,更是21世紀西北太平洋海域 第三強風暴,僅次於2013年颱風海燕和2010年颱風梅姬。

根據結十,颱風期間全臺灣逾100萬戶停電,累計降雨量超過1,000毫米,在台灣和中國大陸造成嚴重的經濟損失、人員傷亡和破壞,所以已在第49次颱風委員會會議中被永久除名。

莫蘭蒂颱風於9月9日在關島西方海面形成後往西北 西轉西北方向移動,於9月10日轉為輕度颱風,近中心最 大風速超過17.2公尺秒,並持續往西北西方向移動;9月 11日後轉為中度颱風,近中心最大風速超過32.7公尺秒, 並於9月12日上午轉為強烈颱風,近中心最大風速超過 51.0公尺秒;9月13日14時其中心在恆春東南東方海面, 暴風圈開始進入巴士海峽,同日23時起其暴風圈逐漸進 入臺灣東南部陸地及恆春半島,對臺灣東部、中南部及澎 湖、金門地區構成威脅;颱風中心於9月15日2時左右由 金門進入福建,11時金門脫離暴風圈,颱風警報辦解,而 颱風也結束其颱風生命週期(圖1)。

3.2 颱風風場與壓力場

本研究分別以參數化風場及 TWRF 颱風模式重建莫 蘭蒂之氣象場(圖2、圖3),並以其為依據進行風暴潮之 計算。

參數化颱風模式中,9月13日12:00時,莫蘭蒂颱風 位於東經122.9度、北緯20.4度,近中心最大風速約為58 公尺秒,中心最低氣壓約為900毫巴。此時為莫蘭蒂颱風 於其颱風生命週期中強度最強的時候。9月14日12:00時, 颱風中心已通過台灣南部轉往中國大陸,位於東經118.9度、 北緯23.4度,於此期間其近中心最大風速降至40公尺秒, 中心最低氣壓降至930豪巴。

TWRF 颱風模式建構出的氣象場中,09月13日12:00時,莫蘭蒂颱風位於東經122.9度、北緯20.4度,近中心最大風速約為40公尺秒,中心最低氣壓約為900毫巴。至09月14日12:00時,颱風中心已移動至東經118.9度、北緯23.4度,近中心最大風速降至30公尺秒,中心最低氣壓升至970毫巴。

3.4 模擬結果與分析

綜合圖2及圖3之暴潮模擬結果,9月13日12:00時, 最大暴潮高度隨颱風中心移動至台灣東南部海域,造成該 地區有最大暴潮高度約0.4公尺。由於颱風強度大,因此 在該區域還是以壓力梯度影響海水面高程變化較為顯著。 當颱風中心自台灣海峽登陸福建省後,由壓力梯度效應造 成的海水抬升減弱,並透過台灣海峽地形效應及颱風風剪 力效應使台灣澎湖群島南方有負暴潮產生,約0.2公尺, 中國沿岸則有約0.2公尺的暴潮高度。

為與中央氣象局所提供之潮位資料比對以驗證模擬之 準確度,本研究以暴潮總水位與暴潮偏差兩面向做為比對 觀測資料與模擬結果的依據。暴潮總水位之校驗方法,係 以 COMCOT-SS 模式所模擬之暴潮總水位 (Storm Tides) 與模擬之潮夕水位 (Pure Tides)相减,得到模式計算之風暴 潮後,與中央氣象局所提供之調和分析資料相加,得到含 觀則修正值之暴潮總水位,並與各潮位站實際觀測之水位 相比對。圖4列出台東、大武及南灣站於颱風期間之觀測 資料與模擬結果。

暴潮總水位方面,台東站及大武潮位記錄值位於-1.0 至1.0公尺之間,潮差小於2.0公尺。南灣測站潮位記錄值 位於-0.5至2.0公尺之間,潮差小於2.5公尺。大武測站於 9月13日至14日有明顯之潮位上漲。南灣測站9月14日 有明顯之潮位上漲,潮高約2.0公尺。

從暴潮偏差來看,台東測站在9月14日有不顯著之 風暴潮,其值約為0.3公尺,參數化颱風模式導入後之模 擬結果較TWRF氣象場更為接近觀測資料,其值分別為 0.3公尺與0.2公尺,由模擬結果和觀測資料判斷,應未有 風暴潮災害。大武觀測資料顯示,有1.0公尺之風暴潮, 參數化風場導入所模擬之結果和觀測水位較為接近, TWRF氣象場模擬之風暴潮與觀測相比,有低估之情況。 南灣則站觀測水位於9月14日顯著之風暴潮,觀測資料 顯示,風暴潮最大值約有1.8公尺,參數化颱風模式導入 後之模擬結果較TWRF氣象場更為接近觀測資料,其值分 別為1.2公尺與0.7公尺。

莫蘭蒂颱風期間,參數化颱風模式所得模擬結果與觀 測資料相當吻合,顯示模式具有高度準確度,可作為後續 研究之借鏡,並且建立未來預報模式之信心。

四、結論

本研究以非線性多重網格海嘯模式(Comel Multi-grid Coupled of Tsunami Model, COMCOT)為基礎進行發展風 暴潮模式,同時求解卡氏座標及球座標系統下之非線性淺 水波方程式,並以動態巢状網格解析不同尺度之長波傳遞。 除導入理想颱風模式外,也耦合中央氣象局目前所使用之 大氣動力模式 TWRF 2.0 (Typhoon Weather Research and Forecasting)之非對稱颱風結構氣象場和全球天文潮模式 TPXO。為驗證模式準確性,選用 2016 年莫蘭蒂颱風 (Typhoon Meranti)之暴潮事件進行分析,並與觀測資料 進行比對,研究成果指出模式可掌握風暴潮朝高、潮高到 時及其歷時,即 COMCOT 暴潮預報模式具有高準確度。 未來冀望暴潮預報之產品可即時提供預報員和災防單位, 作為暴潮警戒之評估,在颱風侵襲期間,沿海地區居民能 有足夠時間準備,並降低可能遭受之災害。

參考文獻

- Dushaw, D. Brian, Gary D. Egbert, Peter F. Worcester, Bruce d. Cornuelle, Bruce M. Howe and Kurt Metzger, A TOPEX/POSEIDON global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Prog. Oceanog. Vol. 40, pp. 337 – 367, 1997
- [2] Flather, R.A. and Proctor, R., Prediction of North Sea storm surges using numerical models: recent developments in the U.K. In: Sundermann, J. & Lens, W. (eds), North Sea dynamics. Springer, Berlin, pp. 95-107, 1983

- [3] Pugh, D.T. Tides, surges and mean sea level. John Wiley & Sons., 1987
- [4] Jelesnianski, C. P., J. Chen and Wilson A. Shaffer, SLOSH: Sea, Lake, and Overland Surges form Hurricanes, 1992
- [5] Large, W. G. and S. Pond, Open ocean momentum fluxes in moderate to strong winds, J. Phys. Oceanogr., vol. 11, pp. 324-336, 1981
- [6] Liu, Philip L.-F., Young-Sik Cho, Michael J. Briggs, Utku Kanoglu, and Costas Emmanuel Synolakis. Runup of solitary waves on a circular island. J. Fluid Mech. Vol. 302, pp. 259–285, 1995
- [7] Luettich R. A. Jr., J. J. WesterinkADRIRC: An Advanced Three-dimensional Circulation Model for Shelves, Coasts, and Estuaries, 1992
- [8] Powell, M. D., P. J. Vivker, and T. A. Reinhold , Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, vol. 422,pp. 278-283, 2003
- [9] Westerink, Joannes J., Richard A. Luettich, Jesse C. Feyen, John H. Atkinson, Clint Dawson, Hugh J. Roberts, Mark D. Powell, Jason P. Dunion, Ethan J. Kubatko and hasan Pourtaheri, A basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana. American Meteo. Soc., vol. 136, pp. 833 – 864, 2008
- [10] 李賢文,"沿海窪地與海水推升之研究(1)-台灣問圍 海域颱風暴潮數值模式",防災科技研究報告,1984。
- [11] 劉肖孔,"臺灣海域颱風暴潮及氣象潮數值預報模式研究指書",第三階段成果報告,中央氣象局研究報告第 279 號,1987。
- [12] 于嘉順,"中央氣象局多尺度暴潮模式預報作業改進及 長期暴潮水位模擬分析研究(1/3)",交通部中央氣象 局委託研究計畫成果報告,2005。
- [13] 李賢文,"台灣鄰近海或朝分預報數值模式",第二屆海 洋數值模式研習會論文集,港灣技術研究所,P.179-P.195,1989
- [14] 黃榮鑑、姚家琪、"颱風暴潮三維數值模式研究",第17 屆海洋工程研討會暨1995 兩岸港口及海岸開發研討會 論文集 p.315-p.332,1995
- [15] 邱铭達、高家俊、逢智源、江俊儒,"颱風暴潮數值推 算確度提升之研究",第 28 屆海洋工程研討會論文集 p.253-p.258,2006

圖 1:2016 年莫蘭蒂颱風路徑圖(中央氣象局颱風資料庫提供)。

圖 2:莫蘭蒂颱風之參數化颱風氣象場 (2016.09.13 12:00 - 2016.09.14 12:00)。第一欄為參數化颱風模式重建 之颱風壓力場,顏色表示氣壓值,單位毫巴;第二欄為參數化颱風模式重建之颱風風場,顏色表示絕對風速, 單位為公尺/秒;第三欄為導入參數化颱風模式計算之風暴潮傳遞,顏色表示風暴潮,單位為公尺。

圖 3:莫蘭蒂颱風之 TWRF 颱風氣象場 (2016.09.13 12:00 - 2016.09.14 12:00)。第一欄為 TWRF 重建之颱風 壓力場,顏色表示氣壓值,單位毫巴;第二欄為 TWRF 重建之颱風風場,顏色表示絕對風速,單位為公尺/ 秒;第三欄為導入 TWRF 颱風模式計算之風暴潮傳遞,顏色表示風暴潮,單位為公尺。

圖 4: 實測潮位結果比較,以台東、大武和南灣測站為例。藍色實線為參數化颱風氣象場導入之模擬結果,紅 色實線為 TWRF 氣象場導入之模擬結果,黑色實圈為氣象局潮位觀測資料與調和分析差值,縱軸為風暴潮 高,單位為公尺,橫軸為時間,單位為天。