鄉鎮潮汐預報之大中小潮特性研析

李語宸 陳進益 張國棟 林勝豐

簡報大綱

- 一、前言
- 二、研究方法
 - 三、分析結果與討論
 - 四、結論與建議

一、前言

● 鄉鎮潮汐預報之「大、中、小潮」分級標準研究可分為兩個階段:

▶ 第一階段

第一階段是依據日**潮差與當**月最大潮差之比值,當比值 大於等於0.80為大潮、比值 小於0.55為小潮,介於兩者 之間為中潮

▶ 第二階段

依據每月之日潮差大小排序, 採用**三等份法**,排序前1/3者 定義為大潮,排序後1/3者定 義為小潮,其餘者定義為中 潮 比值為**0.80**和**0.55**之 分級標準並未必適用 於全台各沿海鄉鎮, 並且於預報作業化工 作時,常需要人工再 加以判斷

採用單一個月內的日潮差進行排序可能造成同樣的潮差值,如差值,其字歸類為在這個月排序歸類為中潮序卻被歸類為中潮,缺乏統一的分級標準

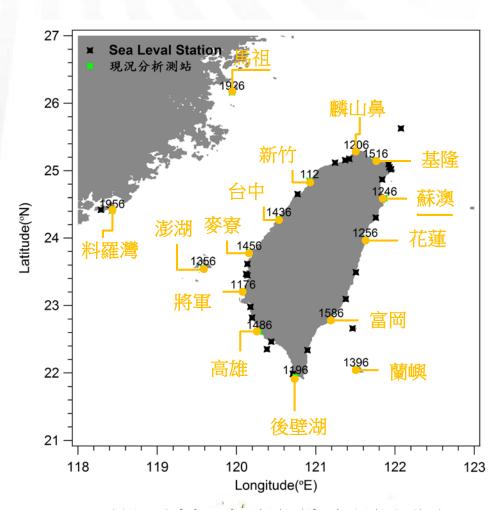
一、前言

▶ 研究目的

改善中央氣象局現行之判定方法

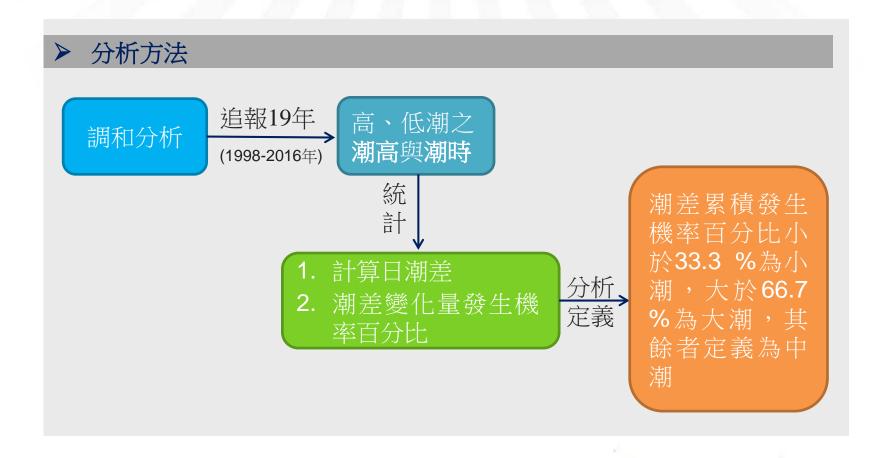
- ① 利用5年(2010-2015)的潮位觀測資料進行19年調和分析追報
- ② 分析每日潮差特性與其變化量之發生機率,藉以分析各地的潮 差變化
- ③ 探討不同潮汐類型之各地潮差發生特性,並依據各地區潮差累 積發生機率百分比,定義出各站「大、中、小潮」分級標準之 上下限值

WIND WAR WAR WAR AND THE STATE OF THE STATE

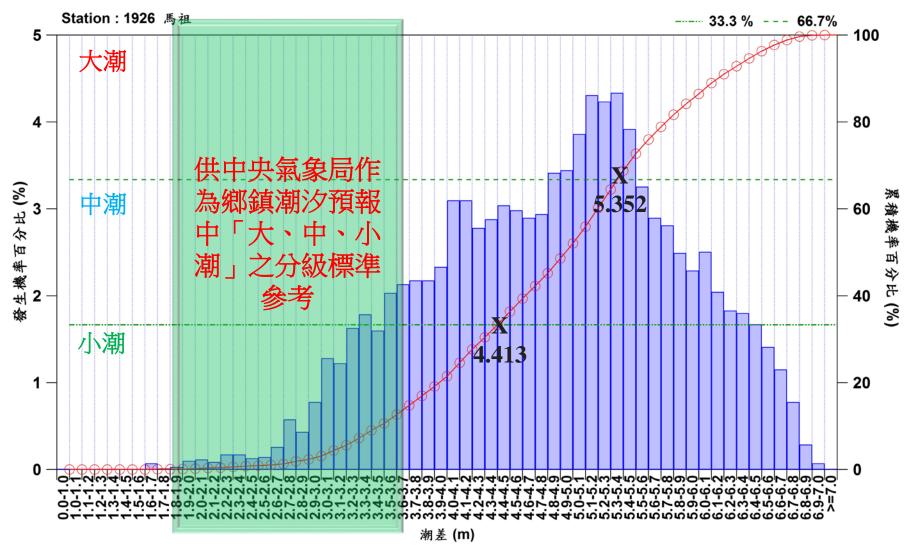

二、研究方法

> 觀測資料

自2010年至2014年5年,經 氣壓修正後之天文潮位資料


》 潮差定義

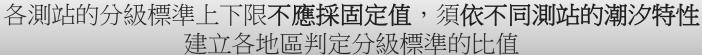
- 日潮差:每日0時0分至當日23時59分間之追報最高潮位與最低潮位之差值
- 月潮差:每月之最高潮位 與最低潮位的差值
- 日潮差比:日潮差除以月 潮差之比值



現況分析15個潮位站地理位置圖

二、研究方法

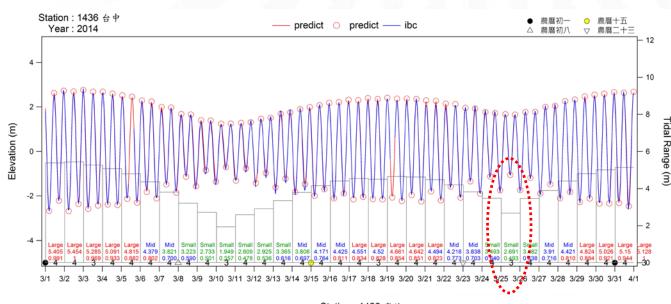
Was a way was a second of the second of the



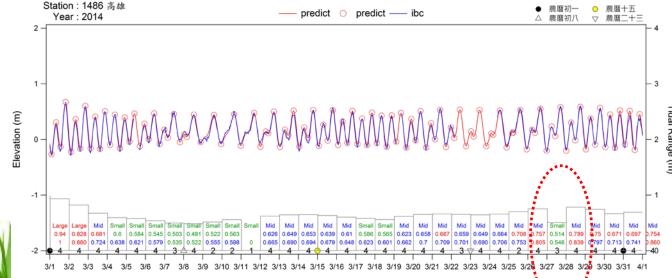
依照原先第一階段「大、中、小潮」分級方式,計算潮差不同測站分級標準上下限

19年(1998-2016年) 最大月潮差量

		潮差累積 機率33.3%	潮差累積 機率66.7%	最大 月潮差量	本研究 日潮差比	本研究日潮差比
1	1 5 1 C ++ 17 57	(m)	(m)	1.450	小潮	大潮
1	1516基隆	0.723	0.909	1.452	0.498	0.626
2	1246蘇澳	1.037	1.411	2.093	0.495	0.674
3	1256莊蓮	1.020	1.399	2.034	0.501	0.688
4	1586富岡	1.038	1.403	2.035	0.510	0.690
5	1196後壁湖	0.819		1.838	0.446	0.611
6	1486高雄	0.603		1.368	0.441	0.598
7	1176將軍	1.278	1.494	2.078	0.615	0.719
8	<10.80季寮	2.802	3.280	4.250	0.659	0.772
9	1436台中	3.773	4.468	5.818	0.648	0.768
10	112新竹	3.294	3.828	4.791	0.688	0.799
11	1206麟山鼻	1.771	2.069	2.804	0.632	0.738
12	1396蘭嶼	1.015	1.380	1.987	0.511	0.695
13	1356澎湖	2.119	2.435	3.144	0.674	0.774
14	1956料羅灣	3.853	4.582	5.976	0.645	0.767
15	1926馬祖	4.413	5.352	7.027	0.628	0.762



各測站潮汐型態


2014年各測站潮汐預報「大、中、小」發生天數統計結果比較

		大潮			中潮			小潮		
	Station	第一 階段	第二 階段	本研究	第一階段	第二 階段	本研究	第一階段	第二 階段	本研究
1	1516基隆	114	120	97	185	120	133	66	125	135
2	1246蘇澳	98	120	113	155	127	127	112	125	125
3	1057世来	00	120	117	150	120	107	115	125	121
4									25	125
5	本研究								25	136
6	利用長時	間(19年	平)預報資	資料,進	行日潮	差統計分	}析 ,計	算各測	拉片 10	138
7	大中小潮發生次數,其統計結果顯示尚屬合理 25								113	
8		, 🕠 , 📖 , ,							25	104
9	1430日中	103	120	137	1/0	120	11/	24	25	109
10	112新竹	191	120	139	159	120	116	15	125	110
11	1206麟山鼻	147	120	128	200	120	122	18	125	115
12	1396蘭嶼	101	120	120	154	127	114	110	125	118
13	1356澎湖	159	120	125	192	120	130	14	125	110
14	1956料羅灣	145	120	131	185	120	124	35	125	110
15	1926馬祖	141	120	132	184	120	122	40	125	111

台中一天發生高低潮的 資料數大多為4筆,少 數為3筆(3/10與3/25)

高雄一天發生高低潮的 資料數亦大多為4筆,3 筆(3/7、3/22、及3/27) 與2筆(3/9、3/10、及 3/25)次之,亦有可能一 天僅有1筆(3/11)

四、結論與建議

- 台灣地區的潮汐型態主要為半日潮、和以半日潮為主的混合潮,各測站的分級標準上下限不應採固定值,應依不同測站的潮汐特性建立各地區判定分級標準。
- 2 本文融合先前中央氣象局前兩階段的分級標準研究成果,並擴展到涵蓋整個潮汐變化週期的18.6年之日潮差特性,因此未來中央氣象局只要依照類似潮差變化量累積機率33.3%與66.7%統計數據表之日潮差分級標準即可判斷為大、中、小潮差。
- 3 依照日潮差定義進行每日日潮差統計,有可能會導致分析上的誤差,可能原因為潮汐第二次發生的高潮或低潮出現在次日,致使計算的潮差變化量有偏小現象。建議未來計算日潮差應考慮以一完整潮汐作為統計的標準,以避免因潮汐的第二次發生的高潮或低潮出現在隔日,造成統計的誤差。

Thank You for Your Attention!