106 X557 Vi R BRI

2017 Conference on Weather Analysis and Forecasting

BRI FRRALA TR R

gL g @
R 2283254873 515 4

EARTGRIIEE AP B




Outline

 Introduction

* Improving accuracy of frequency analysis

Presence of outliers (extraordinary rainfall extremes)

Spatial correlation (non-Gaussian random field
simulation)

* Frequency analysis of multi-site rainfall
extremes
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Introduction

* Frequent occurrences of disasters induced by

heavy rainfalls in Taiwan
— Landslides
— Debris flows
— Flooding and urban inundation
* Increasing occurrences of rainfall extremes
(some of them are record breaking) in recent

years

* Almost all of the long-duration rainfall
extremes (longer than 12 hours) were
produced by typhoons.
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Examples of annual max events in Taiwan

Design 1965-year
durations

Duration(hrs)* ] 2 3 4 ) 12 18 24 48 72

Hogoliau 9/5 §/18 8/18 &/18 &/18 8/18 818 §&18 §8/18 8/18

Wutuh 6/11 821 96 96 96 96 8§18 §18 §8/18 /18

1969-year

Duration(hrs)* ] 2 3 4 3] 12 18 24 48 72

Hosoliau 5714 5/14 5/14 5/14 9726 926 9/9 99 9/9 9/9

Wutuh 9/21 98 98 98 98 98 98 98 98 98

1974-year

Duration(hrs)* 1 2 3 4 ) 12 18 24 48 72

Hosoliau 9/27 9/27 10/11 10/11 10/11 10/11 10/11 10/11 10/11 10/11

Wutuh 9/15 9/15 10/11 10/11 9/15 10/11 10/11 10/11 10/11 10/11
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1983-year

Duration(hrs)® | 2 3 4 6 12 18 24 43 72

Hosoliau 5/23  5/23 5/23 5/23 5/23 10/10 10/10 10/10 10/10 10/10

Wutuh 10/1 10/1 /3 6/3 6/3 10/1 10/1 10/1 10/1 10/1

1987 -year

Duration(hrs)* | 2 3 4 6 12 18 24 48 72

Hosoliau 7/26 10/22 10/22 10/22 10/22 10/22 10/22 10/22 10/22 10/22

Wutuh 10/22 7/26 10/22 10/22 10/22 10/22 10/22 10/22 10/22 10/22

1994-year

Duration(hrs)* | 2 3 4 6 12 18 24 48 72

Hosoliau 6/18 6/18 6/18 6/18 6/18 10/9 10/9 10/9 10/9 10/9

Wutuh 6/18 6/18 6/18 9/12 9/12 9/12 9/12 9/12 9/12 9/12
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* A large number of rain gauges maintained by
CWB and WRA. Some of them have record
length longer than 50 years. Most of them
have less than 30 years record length .

e Design rainfalls play a key role in studies
related to climate change and disaster
mitigation.

* Problems in rainfall frequency analysis

— Short record length (less than 30 years) (small
sample size)

— Record breaking rainfall extremes (presence of
extreme outliers)

e Typhoon Morakot

o 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU




- DB

* Typhoon Morakot (2009)
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e Catastrophic storm rainfalls (or extraordinary
rainfalls) often are considered as extreme
outliers. Whether or not such rainfalls should
be included in site-specific frequency analysis is

disputable.
— 24-hr annual max. rainfalls (Morakot) of 2009
o FRAL 1077 mm
° TR 1747 mm
o ROHALL 1329 mm
o [u[fg 1237 mm
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 Concurrent occurrences of extraordinary
rainfalls at different rain gauges

— Several stations had 24-hr rainfalls exceeding 100-yr
return period.

— Site-specific events of 100-yr return period.
— What is the return period of the event of multi-site

100-yr return period?

e (100)"4 = 100,000,000 years (4 sites), assuming
independence

— Redefining extreme events

* multi-site extreme events w.r.t. specified durations and
rainfall thresholds

e Spatial covariation of rainfall extremes

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 10



e Spatial covariation of rainfall extremes

— By using site-specific annual maximum rainfall
series for frequency analysis implies a significant
loss of valuable information.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Study area and rainfall stations
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Event-maximum rainfalls of various
design durations

e Event-max 1, 2, 6, 12, 18, 24, 48, 72-hr
typhoon rainfalls at individual sites.

e Approximately 120 events
* Complete series

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Delineation of homogeneous regions
(K-mean cluster analysis)

e 24 classification features (8 design
durations x 3 parameters — mean, std

dev, skewness)
— Normalization of individual features

e Two homogeneous regions (25 stations)

o 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 14




Regional frequency analysis
* Delineating homogeneous regions
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Hot spots for occurrences of extreme rainfalls

1992 — 2010
Number of extreme
typhoon events

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Rescaled variables for regional
frequency analysis — Frequency
factors

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Goodness-of-fit test and parameters
estimation

!!!!!!
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B |-moment ratio diagrams (LMRD) for goodness-of-fit
test

* Pearson Type 3 distribution
M Parameters estimation
* Method of L-moments

o 2017vRecord-lengthzweightedyegicnatparameters
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L-moment-ratio diagram GOF test

Bl (2) » t=24hr

2017/9/21 ¢ Dept of BioeriVironmmtaJMemf Engineering, NTU"
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L-kurtosis
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Covariance structure of the random
field

e Covariance matrices are semi-positive definite.

* Experimental covariance matrices often do not
satisfy the semi-positive definite condition.

* Modeling the covariance structure of
frequency factors (event-max rainfalls) by
variogram modeling.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 22



Relationship between semivariogram

and covariance function

y(h):%\/ar[z(xm)_z(x)]
=C(0)-C(h)

Clx,x;)=C(h)

- | |/ Influence range . .

sill =C(0)=1

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Semi-variogram modeling (24-hr
EMR)

t=24 hr
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Semi-variograms of EMRs of other
durations
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Stochastic Simulation of

Multi-site Event-Max Rainfalls
e Pearson type lll (Non-Gaussian) random field
simulation

e Covariance Transformation Approach
— Covariance matrix of multivariate PT3 distribution

— Covariance matrix of multivariate standard Gaussian
distribution

— Multivariate Gaussian simulation

— Transforming simulated multivariate Gaussian
realizations to PT3 realizations

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 26



Pyy ~ Py Conversion

Pxy ~ (AxAr —3ACy =3C, A, +3C,C, )puv
+2B, B, pj, +6C,C, oy

) ve (7% ) 1
. 1+(6j g (6J 3

I T 72
A““(aj >~ (6) “r 3
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 Each simulation run generated one sample of
t-hr multi-site event maximum rainfalls.

* Simulated samples preserved the spatial
covariation of multi-site EMRs as well as the
marginal distributions.

* 10,000 samples were generated.
— Multi-site t-hr EMRs of 10,000 typhoon events.
 The number of typhoons vary from one year to

another.

— Annual count of typhoons is a random variable.
2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 28



 Determination of t-hr rainfall of T-yr return
period
— Average number of typhoons per year, m = 2.43
— Return period, T=100 years

— Exceedance probability of the event-max rainfalls,
p=1/(100%*2.43)

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Return Period, T = 200yr
Duration, t = 24hr EMR
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_ 24hr# £ (mm) | 24hr£ ®E (i) | 48hra £(mm) | 48hrE R¥ (&) | 72hrd £(mm) | 72hrE RP(E)
358 1 433 1 460 12

720 53 921 57 1069 118
607 32 759 31 888 52
497 24 636 26 744 42
324 15 403 16 450 24
791 43 1024 55 1122 59
778 102 1037 54 1188 80
630 4 868 42 924 41
519 17 760 23 819 22
338 4 509 6 569 6
908 63 179 51 195 36
676 40 878 45 938 45
614 15 988 39 1100 62
526 22 646 17 697 24
ey 535 61 709 53 736 42
538 40 755 57 801 53
% 528 27 715 34 730 28
1098 92 1490 126 1683 221
1040 65 1614 177 1915 204
R W 818 110 1176 141 1333 130
825 18 1109 25 1235 29
1329 48 1958 89 2533 306
868 22 1395 55 1846 141
3#0 1747 47 2938 121 3417 171
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Estimating return period of multisite Morakot
rainfall extremes

* Four rain gauges within the Kaoping River
Basin recorded 24-hr rainfalls close to
1,000mm (908, 1040, 825, 1237 mm).

e Define a multi-site extreme event

— over 1,000 mm 24-hr-rainfalls at all four sites

— Among the 10,000 simulated events, only 8 events

satisfied the above requirement.
— Average number of typhoons per year, m=2.43

— Multi-site extreme event return period T=514
years.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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* Further look at the simulation results

— Preserving the spatial pattern of rainfall extremes

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Summary

 We developed a stochastic approach for
simulation of multi-site event-max rainfalls to
cope with the problems of outliers and short
record length in hydrological frequency
analysis.

* By increasing the sample size and considering
the spatial covariation of EMRs, the return
periods of site-specific and multi-site rainfall
extremes can be better estimated.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 44



Suggestions

e Establish an archive of storm events
— Seasonal and storm-type specific

— Will be very helpful for meteorological and
hydrological studies (climate change detection, freq.
analysis, etc.)

 Form a meteo-hydrology (hydro-meteology)
working group
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Rationale of BVG simulation using
frequency factor

* From the view point of random number
generation, the frequency factor can be
considered as a random variable K, and K_ is a
value of K with exceedence probability 1/T.

* Frequency factor of the Pearson type lli
distribution can be approximated by

Stg
na
de

ERE NG ()

[A]

3 4 5
RORORD
6 6 3\ 6
2017/9/21
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 General equation for hydrological
frequency analysis

X; = uy + Koy

Given u,,Gandy, ,1f we can generate a set of

random numbers of K, say 4 .4,,---,k, ., then a

random sample of X| say x,.x,,---,x, . can be
obtamed by x, = u, +koc,.

Note thateach 4,/ =1,2,---», corresponds to its own

exceedence probability 1/7;.

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 47



e The gamma distribution is a special case
of the Pearson type lll distribution with a
zero location parameter. Therefore, it
seems plausible to generate random
samples of a bivariate gamma
distribution based on two jointly
distributed frequency factors.

K, ~z+(z —1)7/6X :13(2 —62(72()

3 4 5 A
LEOROR OIS
Q 6 6 3L 6
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Gamma density

1 x ) ,
fX(X;a"B):aF(,B)(aj e 0<X<+4w®

2

o=——>0 ﬂ:(gj >0 yzaﬁza\/ﬁ>0
VA y

i o, and v are the mean, standard deviation, and

skewness coefficient of X (or Y), respectively, and «

Hr

and £ are respectively the scale and shape

parameters of the gamma density. o =

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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el el ) s
6 3 6 6 6) 36
e Assume two gamma random variables X and
Y are jointly distributed.

e The two random variables are respectively
associated with their frequency factors K,
and K, .

 Equation (A) indicates that the frequency
factor K, of a random variable X with gamma
density is approximated by a function of the
standard normal deviate and the coefficient
of skewness of the gamma density.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 50
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Simulation of the frequency factor Ky can be achieved

by generating a random sample of the standard normal
deviate U, sayu,.,u,,---,u , and then utihizing Eq. (A) to

obtammk, ,k_,---.k_fromu,u,,---.u,.
However, for a bivanate gamma density 7. (x, ¥),

the two frequency factors Ky and Ky are correlated
through two correlated standard normal dewviates U/

and V, with a correlation coefficient o, .

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 51




 Thus, random number generation of the
second frequency factor K, must take into
consideration the correlation between K,
and K, which stems from the correlation
between U and V.
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Conditional normal density

 Given a random number of U, say u, the
conditional density of V is expressed by

the following conditional normal density
S .

exp<—1 Y~ A .

\/277(1_p3v) | | 2 _\/1_p6v |

A (VU =u) =

with mean 2w! and variance 1-o’,.
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Thus, based on a random sample #,,2,.---,u, of U, a

random sample of V, sayv,,v,,---,v, , can be

generated by a normal random nmrllil;er generator
with means p, 2, (i =12,---,n) and vanance
1— p .

. -

exp<—E ME TV

\/277(1_p3v) | 2_\/1_:06v_

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 54
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From the two sets of random samplesu, u,,---,u

andv,,v,,---,v_, Eq. (A) can be used to obtain
random samples of the two frequency factors Ky

and Ky, 1.e. &k .k k and k£, .k k

IR S I SR 17 Fa R Fu”
Given the expected values ( tt,and s, ) and standard

deviations ( &, and &, ) of random vanables X and ¥,

random samples of the bivanate gamma distribution
can be obtamned by transfernng &, .4, ,---,&, and

o] e IE

k, &k, -k, tox,x;,---,xand ¥, y¥,,---, ¥, .

:' .],2'2

- by
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Flowchart of BVG simulation (1/2)

Given the means, standard deviations and coefficients of skewness of
two correlated gamma random variables X and 7 1.e.,

(ty, Oy, ye)and (1, ,0p,7y)

Also given the correlation coefficient of X'and 7 i.e., 0

[Note: o= uy /2]

l

Converting the correlation coefficient 0, to O, using Eg. (10)

|

Generating a random
sample 24, ,24,,--- U, of
U ~ N(O,)

l (Eg. 2)

(Eq. 8)

Generating a random
sample v, v,,---, ¥, of
V ~ N(O,])

i (Fg. 2)

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Flowchart of BVG simulation (2/2)

Generating a random

Generating a random

sample 24,,24,,-- -1, of M sample v, V,,---, ¥ of
U7 ~ N(O,)) ¥ ~ N(O,])
(Eg.2) (Eg.2)

h 4 h 4
Calculating a random Calculating a random
sample of &x sample of £y
( x:;r;:' :'kxn) (k:y: :kyn)

l (Eg. 3)

Calculating a random
sample of X7

(xp-xg:-"':xn}

l (Eq. 3)

Calculating a random
sample of ¥

(}"p}’g:"':}’n}

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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In practice, stochastic sismulation of a bivanate
gamma distribution requires the generated random

samples to have pre-specified mean, standard
deviation, coefhicient of skewness (( 1, G5, 75 )
and ( 1, ,G,, 7)), and correlation coefficient o, .

In order for the generated samples to meet such
requirements, the correlation coefficient p,,, must be

determined from the pre-specified ¥, .y,,and o,
through the following equation:

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 58




Oy =~ Pyy Conversion

Pxy = (AxAr —3AC, —3C, A +9C,Cy )puv
+2B, B, p5, +6C,C, 05,  [B]

) e (7% ) 1
— e — /X _| LX C. ==

o (nY st (n) .1
A(_1+(6j >~ (6) “r 73

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU
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Derivation of the o, ~ o, relationship

Suppose that random vanables X and ¥ form a bivariate
gamma distribution. Given the means ( zand £, ) and
standard deviations ( 5, and &, ), X and ¥ can be
respectively expressed in terms of their corresponding
frequency factors Kyand Ky, 1.e.,

X=u,+K,c, and Y =pu,+K,0,.
Note that, with given means «,and z, and standard

deviations ¢, and &, , the coefficients of skewness

v and ¥, can be readily determined.

Q 2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 60



coefficient of K anc

and

v = Pr. x,

From the above equations, it can be easily shown that
frequency factors Ky and Xy are distributed with zero
mean and umt standard deviation, and correlation

coefficient of X and Y 1s equuvalent to correlation

-K}g i.E.:,

E[K;|=E[K,
Var|K ;| =Var|K,]=1,

=0,
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* Frequency factors K, and K, can be
respectively approximated by

yy 1 ol v Y (7 17 Y
bbb () e o3
2 3 4 5
vt (3

where U and V both are random variables
with standard normal density and are
correlated with correlation coefficient ou. .
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e Correlation coefficient of K, and K, can be
derived as follows:
Pk, =Cov(Ky,Ky) =E[KK,]

(U L 1)76X ;(U3—6U)(76X)2—(u2—1)(%Tw(?jﬁl—;(?j&;]j

~ E<- .

vt () e (4
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E[Ky K, ]

AAUV + AWl)Jr AC UV -6V

+ AB;U +B, AV{0? ~1)+ B,B, (U* -1)v* -1)
e B, C, (U=1)V° -6V )+ B, D AT - 1)

T leCA Ui -BU N +C B, (U602 1)

+C,C,(U*-6U)vi-6v)+C,D A" -6U)

+ DAV +D,BAvT-1)+ DXW6V]+ D,D,
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N/
~y/

E[K K |

E_AXAYUV +ACUN°-6V)+B,B, (U -1)v2-1)

+C,A(U-6U) +C,C,(U*-6U V-6V )+D,D,

E[K,]~E|AU +B, (U?-1)+C,(U*-6U )+ D, |=D,

Since K, and K, are distributed with zero

means, it follows that
D, =D, =0
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Pr, Kk, = E[KXKY]

A AUV +ACUWV-6V)+B,B,[U*-1) (V2 -1)
+C,A(UP-6U)V +C,C (U -6U) (Vi-6V)
= AA puy + AC, [EUVE)-6p,, |+ B, B, [E(UAV?)-1]

+C, A _E(U 3\/)_6IOUV:|
+C,C, [EUNV?)-6E(UV?)-6E(UN )+36p,,
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e It can also be shown that
EUNV?)=2p, +1 EUN?)=6p3 +9p,,

EU¥V )=EUV?)=3p,,
Thus,
Pxy = Pryk, (AXA( —3A,C, =3C, A +39C,C, )Puv

+2B, BYIOSV T 6CXCYIOSV
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Equation (B) indicates that o, can be expressed as
a third order polynomaal of p,;. . It 1s therefore of

practical concern whether there exats a unmique p,;,

fora given set of ( ¥, ¥y, P ). Or equivalently,
givenasetof (v, 7, 04 ), does Eq. (B) return a
single-value of o, ?
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Oy ~ Pyy Slngle -Value Relationsh ip

D

025 05 075 ]
Puy
= (a) — o _s 5 (b)
. =1.0 % ¥y =3.0
v, =0.1,0.5,1.0,1.5,2.0,2.5,3.0 ¥, =0.1,0.5,1.0,1.5,2.0,2.5,3.0

=

A A = A A | ]
¥y =10, ¥y =0.1 yyr=10, ¥, =30 ¥y =3.0, ¥, =0.1 ry=3.0, yp=3.0

We have also proved that Eq. (B) is indeed a single-value function.
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Proof of Eq. (B) as a single-value function
Let /{p,,) = 80y /80y, . From Eq. (B) we have

Som)= (AIA}’ —3A4,C, —3C53A, + QCXC}’)
+4B B, 0, +18C,C, 00,

AIAF_SAXC}’ _EIAF + QCXCI" — (Aff _SCI)(A}’_SCF)
4 y 2 s y
A, -3, =1+|22| [ 22| || L2 ] ] 4| £=2] 0
6 6 6 6
4 2 2 ] 2
4, -3, =1+ | 2| [ 2| o[ 2] 21 4[] 0.
Q 6 6 6 6
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Let g(o)=4B5By Py +18C;Cy

_rxly

Vi

9

(

6

f_l

Also, letG, = ’x Gy = Y \We then have

0

6

&(P) = 4G5 G (G = DGy — Dy + 255Gy iy
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Flom) =G -1+ [GE -1+ G
+ 4G GGy — DG} — D) oy + 2G5G o1y

3,
Y 46,6 (GG )+ 4G Gy
Oy
Let g =0, 1t yields an extreme value of f at
Oy
- _ Gy -DGr-D
Py =

GGy
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Flom =l 17+ a2 [iGh -1+ 6]
AGE DGR 1)+ 2GE - DHGE -1

@ -7+ &G+ G- 2@ -1y G-y
= GGy -1’ + (G- )Gy + G3Gy — (G — 1) (G - 1)

Since —1< p,;, < 1(or equivalently, o, <1), it yields

(Gy DGy -1 <GyGy
Thus

3

flo) 2 GGy 1) +(Gr —1)'Gy > 0
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We now check the second derivative of (o), 1.€.,
o’ f

= 4G,G} >0
(P ) }’

Therefore, f{o,)>0 isthe minimum of the

function f (o, ) = 8p, /8o, . It follows that

F (o) =8Py [0py >0
for all possible values of o, .
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e The above equation indicates Oxy
increases with increasing ouy , and thus
Eq. (B) is a single-value function.
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Conceptual description of a gamma
random field simulation approach

Given a pair of bivariate gamma random Given a homogeneous and isotropic random

variables (X,F) with know properties field Z{(x) with known gamma density and

covariance function C'z(%) or variogram Y;{4).

.HX:,HF? }’X:}’F:pi}’

| |

Converting Cz(%) to Cyd{k) where Hi{x) iz a

random field with standard normal density

Converting 2y to O where (1)

represents a pair of bivariate standard
and covariance function Cy{/4).

l l

normal variables.

2017/9/21 Dept of Bioenvironmental Systems Engineering, NTU 78



’

v

Generating a random sample of (L7,1) with

sample size », i.e. {(H!.?Vj)?f' =1,- --,H}.

Generating a realization of I¥, i.e. {w(i, j),

i=1--,n;j=1-- m}where (i)
represents a spatial location and » and =
defines the extent of the spatial domain.

Individually and independently converting

U, to X, and ¥, to ¥, . The resultant {(.x:. ¥ ),

i=1,-- -:,H} ig a random sample of the

bivariate random variables (X, 7).

Individually and independently converting
w(i, j)to z(i, j). The resultant { z(Z, j),
i=1l---,n;j=1---,m} isarealization
of the random field Z{(x).
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