中央氣象局高解析度全球預報模式的診斷及物理參數化的改進研究

林昌鴻1楊明仁2陳建河1曾建翰1隋中興2

中央氣象局氣象資訊中心¹ 國立台灣大學大氣科學系²

本研究使用 T319L60 解析度作業版的中央氣象局全球模式(CWB/GFS) 模擬 DYNAMO 密集觀測實驗期間 (2011/10-2012/3 共 6 個月)的其中 3 個月(2011/10-2012/12)的事後模擬(hindcast)之控制組(control)實驗,並利用奇 異向量(singular vector)技術產生初始條件擾動,進行 20 組成員的系集預報(ensemble forecast)實驗。為了瞭解 CWB/GFS 模式對於熱帶季內震盪(Madden-Julian Oscillation; MJO)系統的掌握能力,我們使用 NCEP 再分析資 料與 CWB/GFS 模式之模擬結果進行結果比較與差異檢討,並進行物理參數化法之敏感度實驗,嘗試找出 CWB/GFS 模式適合模擬 MJO 系統的物理參數化方案組合。另外,探討 CWB/GFS 使用 MPAS 模式的 new Tiedtke 積雲參數化方案對於 MJO 現象的預報能力。

關鍵字:MJO (Madden-Julian Oscillation)、奇異向量(singular vector)、Tiedtke 積雲參數化方案

一、前言

由於大氣科學界對於 MJO 的觀測及瞭解有限,為 了更加瞭解 MJO 的發展並改善數值預報模式對於 MJO 的預報能力,美、日等國科學家於 2011 年 10 月 至 2012 年 3 月於印度洋進行 DYNAMO 的密集觀測實 驗。

本研究目的在於應用 DYNAMO 實驗的密集觀測 資料,針對 CWB/GFS 模式就 MJO 熱帶對流系統的掌 握程度進行系統性的診斷分析。

二、CWB/GFS 模擬結果

於 MJO 對流特徵主要的三個變數場(OLR 場以及 200、850 hPa 緯向風場)中(圖 1~圖 3), CWB/GFS 模 式於 DYNAMO 實驗期間的 MJO-1 至 MJO-3 事件, 相較於 NCEP 之觀測分析而言,模式對於緯向風場的 掌握程度較高,於預報第 15 天內, CWB/GFS 模式仍 能合理地模擬出 MJO 向東移動、再次增強及對流極值 發生位置的特徵(圖 2、圖 3)。在 OLR 場方面(圖 1), 對於 MJO-1 及 MJO-3 事件, CWBGFS 模式預報第 5 天過後,便無法掌握到 MJO 系統向東移動的特徵;對 於 MJO-2 事件而言,模式預報第 10 天後其負值的 OLR 分佈較為零散,且向東移動的訊號較不明顯,呈現對 流停滯的情況。由於緯向風場對於 RMM 指數的貢獻 度較 OLR 場為高(Liu et al. 2016),因此雖然 CWB/GFS 模式對於 OLR 場之預報在第 5 或第 10 天後,並沒有 明顯向東移動的訊號,但是模式在緯向風場方面仍有 掌握到 MJO 東移的趨勢特徵,所以 CWB/GFS 模式在 MJO 相位圖(圖 4)中仍呈現出向東移動的分佈。

圖 1: 濾波後的 OLR(Wm⁻²)距平(10[°]S~10[°]N 平均), 分別為(a)NCEP 再分析資料及(b)~(e)CWB/GFS 模式 預報第 1、5、10 和 15 天的結果。(b)~(e)的虛線為 NCEP 資料的 OLR 距平<-10 (Wm⁻²)。

圖 2: 同圖 1 但為 200hPa 緯向風距平(m/s)。虛線為 NCEP 再分析資料風速<-3 m/s。

圖 3: 同圖 1 但為 850 hPa 緯向風距平(m/s)。實線為 NCEP 再分析資料風速>2 (m/s)。

三、MJO 指數

CWB/GFS模式在第1至10天預報MJO-1事件的 結果,呈現對流系統於印度洋西岸生成並於非洲西岸 消散,大致上掌握到MJO-1事件的對流肇始及系統移 動的趨勢[圖 4(a)]。於第15天的預報,對流系統生成 後,強度迅速減弱至接近振幅1。系統通過第4相位 後,訊號強度迅速下降至振幅1以下,直到第7相位 時有短暫的增強至振幅1以上,但隨後又迅速下降。

圖 4(b)中, CWB/GFS 模式預報第1至5天的預報 結果大致上有掌握到 MJO-2 事件之對流肇始及系統 移動的方向。在預報第10天的預報結果顯示,雖然對 流生成位置與 NCEP 分析場較為接近,但強度明顯偏 弱,振幅接近 1,並且在第 2 相位時,強度下降至振 幅 1 以下。而第 15 天的預報,在整個 MJO-2 期間, 振幅皆維持在 1 以下。

MJO-3 事件期間[圖 4 (c)], CWBGFS 模式於預報 第 5 天以上時,於對流肇始後,訊號強度便接近 0 的 位置,且模式皆沒有合理的模擬出對流發展及系統東 移的趨勢。

圖 4: DYNAMO 期間 3 個 MJO 事件的相位圖。實線的 部分分別代表 NCEP (黑色)及 CWBGFS 模式預報第 1 (紫色)、5 (藍色)、10 (紅色)及 15 (灰色)天的 結果。圓點代表 MJO 肇始位置。

四、RMM 指數的相關係數與均方根 誤差

圖 5 為參考 Lin, Brunet, and Derome (2008)的方 法,計算 CWB/GFS 模式與 NCEP 分析場於 MJO-1 至 MJO-3 事件期間的 RMM 指數雙變數相關係數 (bivariate correlation; COR) 及 均 方 根 誤 差 (root-mean-square error; RMSE),其計算公式如下 *COR*(r)

$$= \frac{\sum_{i=1}^{N} [a_{1i}(t)b_{1i}(t) + a_{2i}(t)b_{2i}(t)]}{\sqrt{\sum_{i=1}^{N} [a_{1i}^{2}(t) + a_{2i}^{2}(t)]} \sqrt{\sum_{i=1}^{N} [b_{1i}^{2}(t) + b_{2i}^{2}(t)]}}$$
(1)

 $RMSE(\tau)$

$$= \sqrt{\frac{1}{N} \sum_{i=1}^{N} \{ [a_{1i}(t) - b_{1i}(t)]^2 + [a_{2i}(t) - b_{2i}(t)]^2 \}}$$
(2)

式中 a_{1i}(t), a_{2i}(t)分別代表 RMM1 及 RMM2 在時間(t) 的觀測值, b_{1i}(t)及 b_{2i}(t)則代表模式預報值。

在 MJO 相位圖中, CWB/GFS 模式預報第 15 天

以內,MJO-1 及 MJO-2 的結果在系統移動趨勢上大致 與 NCEP 再分析結果相同,因此使得相關係數維持在 0.5 以上。其中 MJO-2 事件的相關性較 MJO-1 事件為 差,且在預報第 11 天後相關性迅速下降。推斷可能是 由於在 200 hPa 緯向風場上,MJO-1 事件在預報第 10 天與第 15 天,仍能較合理地模擬出 MJO 肇始時東風 增強的位置,且東風極值的強度也較 MJO-2 事件時較 接近 NCEP 再分析資料的觀測結果。MJO-3 事件期間, CWB/GFS 模式於預報第 5 天後,並沒有合理的模擬 出 200 hPa 的緯向風場及 OLR 的強度與變化,造成 MJO 指數的相關性較低且均方根誤差較大的情況。

圖 5: RMM 指數的(a)相關係數及(b)均方根誤差。

五、物理參數化法敏感度實驗

於事後模擬(hindcast)實驗中, MJO-1 及 MJO-3 事件在預報第5天過後, MJO 移動方向明顯與 NCEP 再分析資料相反。因此,我們嘗試使用不同的物理參 數化方法,進行敏感度測試實驗(表 1),找出適合 CWB/GFS 模擬 MJO 系統的物理參數化方案組合。

使用 NSAS 方案的模擬結果[圖 6 (b)~(e)],於 MJO-1 期間系統有向西移動的情況,且對流強度偏弱, 甚至發展不連續的情況(c3s1p3)。而將積雲參數化法改 為 Tiedtke 方案後,模擬 MJO-1 對流系統轉為由西向 東移動,但模擬對流系統強度則於 MJO-1 期間有偏強 的情況,且負 OLR 極值範圍較廣,而 MJO-2 期間則 為偏弱的現象。

透過 MJO 指數的相關係數與均方根誤差分析(圖 7),於 MJO-1 期間,不管是 CTL 或是 NSAS 方案和 Tiedtke 方案的敏感度實驗,其相關係數都達到 0.90 以上。而 MJO-2 期間,模式使用 NSAS 積雲方案的模 擬,於 MJO 肇始後對流訊號便持續下降,沒有掌握到 對流系統發展的變化。而在 Tiedtke 方案的部分,雖然 於非洲、西印度洋地區的訊號強度與觀測值一致,但 隨著對流系統移入東印度洋時,模式亦沒有掌握到對 流再次增強的趨勢。因此,就相關係數而言,物理參 數化敏感度實驗的結果於 MJO-2 期間的相關性皆較 MJO-1 期間低[圖 7 (a)],而使用 Tiedtke 方案時,除 了 c4s2p3 實驗,MJO 指數的相關性達 0.85 以上,相 關性皆較控制組實驗與 NSAS 方案高。

MJO 指數的均方根誤差顯示[圖 7(b)], Tiedtke 方 案的模擬於 MJO-1 事件期間,對流系統於印度洋地區 訊號過強,導致強度誤差增加,使得大部份的 NSAS 方案之實驗模擬對流強度誤差的結果較 Tiedtke 方案 低。而 MJO-2 期間,則呈現相反的情形,即由於 NSAS 方案的模擬 MJO 訊號的強度於系統生命期間皆明顯 較觀測值低,導致訊號強度誤差偏高。

	shallow		Shallow convection			
	con	vection	Frank version		NCEP.2010	
&		(s1)		(s2)		
cumulus scheme		PBL		PBL		
		Hong and Pan .1996 (p2)	Han and Pan .2011 (p3)	Hong and Pan .1996 (p2)	Han and Pan .2011 (p3)	
cumulus	NSAS	(c3)	c3s1p2	c3s1p3	c3s2p2	c3s2p3
	Tiedtke	(c4)	c4s1p2	c4s1p3	c4s2p2	c4s2p3
	new Tiedtke	(c5)	c5s1p2	c5s1p3	c5s2p2	c5s2p3

表 1: 物理參數化法敏感度實驗設計表。

-45 -35 -30 -25 -15 -10 -5 0 10 15 20 30

圖 6:使用不同物理參數化敏感度實驗並使用 RRTMG 輻射參數化法的結果。等值線代表 NCEP 再分析 資料之 OLR 距平小於-10 Wm⁻²,間距為 10 Wm⁻²。控制組實驗為 c3s2p3 並搭配 Fu and Liou(1992;1993)。

圖 7: NCEP 再分析資料與敏感度實驗的 RMM 指數(a)相關係數與(b)均方根誤差。顏色分別為 MJO-1(藍色)及 MJO-2(紅色)事件。

六、系集模擬實驗

為了掌握模式預報的不確定性,本研究使用中央 氣象局現有的奇異向量(singular vector)技術[賴等人 (2014)],於模式初始場產生 20 組線性獨立的擾動差異 之系集成員,進行系集預報(ensemble forecast)實驗, 並討論系集預報對於 MJO 對流系統模擬的表現。

系集預報實驗中,選擇 DYNAMO 期間 MJO 對流 系統發展訊號較為明顯的 MJO-2 個案進行模擬。 將奇異向量技術進行初始場擾動的範圍,設定於印度 洋及太平洋海域,並將此範圍分為1至3種區域(圖 8), 嘗試透過數學方法計算這三種不同區域(domain)內擾 動場快速發展的模態,而計算出多組初始擾動成員後, 討論系集預報的表現。

圖 8: 使用奇異向量技術於印度、太平洋地區進行 初始場擾動之示意圖。範圍分別為(a)一個區域 (40°E~60°W)、 (b)兩 個 區 域 (40°E~110°E, 120°E~60°W)及 (c)3 個 區 域 (40°E~110°E, 120°E~180°E, 170°W~60°W),區域南北範圍皆為 30°S~30°N。

OLR 距平的相關係數時序圖中(圖 9),3 個系集 模擬實驗的系集平均結果,於6至7天以前相關性與 控制組實驗類似,於預報第7天之後,CTL 實驗的相 關性下降至0.5以下,而系集平均則維持在0.5以上, 顯示系集模擬對於長期預報有較明顯的改進。而均方 根誤差方面也有類似的結果[圖 9(d)~(e)],於預報第1 週內,各系集模擬實驗的系集平均OLR 距平值誤差與 控制組實驗類似,但於預報第7天之後,系集平均的 誤差明顯較低。

由圖 10 中,比較控制組及各系集平均的 OLR 距 平相關性與誤差,呈現出將擾動區域增加後,各系集 平均的相關性及誤差有較好的表現。但若將擾動區域 由 2 個增加至 3 個,於預報第 11 天後,兩者系集平均 的得分趨近於一致,對於兩週後長期預報的改善有 限。

圖 9: NCEP 再分析資料與系集模擬實驗的 OLR 距平 相關係數與均方根誤差。(a)、(b)及(c)分別為印度洋、 太平洋海域分為 1、2 及 3 個區域的系集預報實驗 OLR 距平相關係數,(c)、(d)和(e)則為 OLR 距平均方根誤 差。藍線為初始場未經過擾動的控制組實驗,紅線為 系集平均,而灰色線為系集成員。

圖 10: 黑實線為控制組實驗,紅虛線、綠實線及藍線 分別為將印度洋及太平洋海域分為1至3個區域進行 初始場擾動的系集預報平均。

七、new Tiedtke 積雲參數方案

將 CWB/GFS 模式的 Tiedtke 積雲參數化更新為 MPAS 模式的 new Tiedtke 參數化方案[Bchtold et al. (2014)]後,並搭配其他不同物理參數化法(表 1),對 於 DYNAMO 期間的 MJO-2 個案進行測試。其結果顯 示 MJO 對流系統發展,相較於 NCEP 再分析資料與 Tiedtke 參數化模擬結果,有明顯偏弱的情形(圖 11)。

圖 11: NCEP 再分析資料與搭配不同積雲、淺積雲和 邊界層參數化法於 10°S~10°N 平均的 OLR 距平 (w/m²)時序圖。粗虛線為模式初始場時間。

由於 new Tiedtke 參數化方案中,上沖流內的質量 通量考慮空氣塊逸入和逸出作用, $M_{deep}^{up} = M^* + (E_{deep}^{up} \times M^*) - (D_{deep}^{up} \times M^*)$,若增加環境逸入至對流內, 有助於增加上沖流內的質量通量,使對流發展。因此 為了使 MJO 對流增強,將逸入作用改寫為 $E^{new} = E_{deep}^{up} \times (1 + \bar{u}_{shear})$,使其正比於環境垂直風 切。模擬結果呈現出(圖 12),增加逸入率實驗的 MJO-2對流系統相較於CTL實驗有明顯增強的趨勢, OLR < -70 (w/m²)的範圍增加,且降雨量也明顯變多。

圖 12: (a) NCEP 再分析資料、(b), (e)c5s2p2、(c), (f) 增加逸入率實驗於 10°S~10°N 平均的 OLR 及 24 小時 累積降水時序圖(w/m²)。(d)為 GPCP 降水資料。

八、結論

CWB/GFS 模式對於緯向風場的掌握程度較高, 於預報第15天內,模式仍能合理地模擬出MJO東移、 再次增強及極值發生位置的特徵。OLR場方面,大約 於預報第一週過後,模式便無法合理地模擬出MJO系 統發展的特徵。

物理參數化法之敏感度實驗結果中,顯示將積雲 參數化法改為 Tiedtke 方案後,有助於改善 CWBGFS 模式對於 MJO 現象的預報能力。另外,使用奇異向量 技術進行初始擾動的系集預報實驗,可提升 MJO-2 預 報的掌握度至 1~2 週。

九、參考文獻

賴永鑫、曾建翰與陳建河,2014:奇異向量在全球波

譜淺水模式颱風路徑系集預報的應用。*大氣科學*, 42,113-128。

- Arakawa, A. and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.
- Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. *J. Atmos. Sci.*, **71**, 734–753.
- Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139-2156.
- Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 2008-2025.
- Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system, *Wea. Forecasting*, 26, 520–533.
- Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. *Mon. Wea. Rev.*, **124**, 2322–2339.
- Lin, H., G. Brunet, and Derome, J. (2008): Forecast skill of the Madden-Julian oscillation in two Canadian atmospheric models, *Mon. Wea. Rev.*, 136:4130-4149.
- Liu, P., Q. Zhang, C. Zhang, Y. Zhu, M. Khairoutdinov, H.-M. Kim, C. Schumacher, and M. Zhang, 2016: A revised real-time multivariate MJO index. *Mon. Wea. Rev.*, 144, 627–642.
- Tiedtke, M., 1993: Representation of clouds in large-scale models. *Mon. Wea. Rev.*, **121**, 3040– 3061.
- Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. *Mon. Wea. Rev.*, **132**, 1917–1932.
- Yoneyama, K., C. Zhang, and C.N. Long, 2013: Tracking pulses of the Madden-Julian Oscillation. *Bull. Amer. Met. Soc.*, 94, 1871-1891.