Use Riemann Solver for Atmospheric Modeling

Hann-Ming Henry Juang Environmental Modeling Center, NCEP, USA

105年氣象局天氣分析研討會

Menry Juang - 2016 **1999 - 2016** 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199

Introduction

- Modeling atmosphere requires to deal with
	- CFL condition: numerical instability
		- Stable advection scheme or semi-Lagrangian advection
	- High frequency modes (terms)
		- Time-split on different terms or semi-implicit time integration
- Solve both independently
	- Eulerian model, time-split on terms or semi-implicit
	- Semi-Lagrangian advection in grid-point model
- Solve both together
	- Semi-implicit semi-Lagrangian scheme in spectral model
	- Semi-Lagrangian advection along high frequent wave

- **Introducing Riemann Solver by Riemann invariant** characteristic equation (RICE)
	- Simple 1D for easy illustration
- Possible 2D
	- In shallow water equation
	- In nonhydrostatic system
- How about 3D?
	- With splitting, 2D then 1D in vertical
- **Discussion**
	- advantage
	- Future work

On dimensional shallow water equation (gravity waves)

$$
\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0 \qquad \qquad \text{&} \qquad \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} = 0
$$

can be written as

$$
\frac{\partial}{\partial t} \begin{pmatrix} h \\ u \end{pmatrix} + \begin{pmatrix} u & h \\ g & u \end{pmatrix} \frac{\partial}{\partial x} \begin{pmatrix} h \\ u \end{pmatrix} = 0
$$

And we can have a matrix L and it inverse matrix L⁻¹ for the above matrix be diagonal matrix with eigenvector as

$$
L^{-1}\begin{pmatrix} u & h \\ g & u \end{pmatrix} L = \begin{pmatrix} C_1 & 0 \\ 0 & C_2 \end{pmatrix} \qquad \mathbf{R} \qquad IL^{-1} = 1
$$

After we solve L, put it into above equation

we have

$$
L^{-1} \frac{\partial}{\partial t} \binom{h}{u} + L^{-1} \binom{u}{g} L^{-1} \frac{\partial}{\partial x} \binom{h}{u} = 0
$$

then the shallow water equation can be written as

$$
\frac{\partial}{\partial t} \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} + \begin{pmatrix} C_1 & 0 \\ 0 & C_2 \end{pmatrix} \frac{\partial}{\partial x} \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = 0
$$
 or

$$
\frac{\partial R_1}{\partial t} + C_1 \frac{\partial R_1}{\partial x} = 0
$$

$$
\frac{\partial R_2}{\partial t} + C_2 \frac{\partial R_2}{\partial x} = 0
$$

where

$$
R_1 = \sqrt{gh} + u/2
$$

\n
$$
R_2 = \sqrt{gh} - u/2
$$

\n
$$
C_1 = u + \sqrt{gh}
$$

\n
$$
C_2 = u - \sqrt{gh}
$$

So the procedure to solve the 1D SWE by

1) Obtain R and C from u and h at any model grid as

$$
R_1(t) = \sqrt{gh(t)} + u(t)/2
$$

\n
$$
R_2(t) = \sqrt{gh(t)} - u(t)/2
$$

\n
$$
R_3(t) = \sqrt{gh(t)} - u(t)/2
$$

\n
$$
R_4(t) = \sqrt{gh(t)}
$$

\n
$$
C_2(t) = u(t) - \sqrt{gh(t)}
$$

2) Use advection eq to solve next time step of R by

$$
\frac{\partial R_i}{\partial t} + C_i \frac{\partial R_i}{\partial x} = 0 \qquad \text{to get} \qquad R_1(t + \Delta t) \quad \text{and} \quad R_2(t + \Delta t)
$$

3) Obtain next time step u and h and C by

$$
u(t + \Delta t) = R_1(t + \Delta t) - R_2(t + \Delta t)
$$

\n
$$
h(t + \Delta t) = \frac{1}{g} \left(\frac{R_1(t + \Delta t) + R_2(t + \Delta t)}{2} \right)^2
$$
 & $C_1(t + \Delta t) = u(t + \Delta t) + \sqrt{gh(t + \Delta t)}$
\n
$$
C_2(t + \Delta t) = u(t + \Delta t) - \sqrt{gh(t + \Delta t)}
$$

\n4) Back to 2) for the next time

Select 1D case

- Follow Toda et al 2009 (JCP) weak nonlinear case
- Initial condition as

$$
h(x,t=0) = 1.0 + 0.01 \exp\left\{-\left(\frac{x - x_m/2}{5}\right)^2\right\}
$$

From Toda et al 2009

Fig. 6. Initial condition and solution behavior.

From Toda et al 2009

Fig. 9. Difference by CFL.

From Toda et al 2009

Fig. 13. The height at $t = 800.0$ under the initial condition of Eq. (39) for CFL = 0.4, 4.0, 10.0, 40.0.

 $h(x)$, CFL=0.8 1.011 $1.01 1.009 -$ IC $1,008$ $step = 5$ 1.007 $step = 10$ $step = 15$ $1.006 \cdot$ $step = 30$ \mathbf{I} 1.005 $1.004 \cdot$ $1.003 1.002 1.001$ 1 $0.999 0.998 + 0.00$ 920 940 960 980 1000 1020 1040 1060 1080 1100 $\bar{\mathsf{X}}$ GrADS: COLA/IGES

Henry Juang $\overline{\mathcal{A}}$ (14/2017 $\overline{\mathcal{A}}$

 $h(x,t=400s)$, CFL=0.8

GrADS: COLA/IGES

 $\pmb{\mathsf{X}}$

 $h(x)$, $t = 800s$ $1.006 \cdot$ $-$ CFL=0.2 $1.005 CFL = 0.4$ $CFL = 0.6$ $1.004 CFL = 0.8$ $CFL = 1$ -1.003 $CFL=4$ $CFL = 10$ $1.002 CFL = 40$ $1.001 \overline{1}$ $0.999 +$
1780 1785 1790 1795 1800 1805 1815 1810 1820 $\pmb{\mathsf{X}}$

GrADS: COLA/IGES

Henry Juang $\begin{array}{cc} 4/14/2017 \end{array}$ $\begin{array}{cc} 14/14/2017 \end{array}$

advantages

- Advection and high frequency mode are merged into one prognostic variable
- Solve it with a pure semi-Lagrangian advection (here by NDSL)
- No need to select method to get gradient either by grid-point method or spectral method
- Put high frequency mode into the same time step as semi-Lagrangian scheme
- Much less diffusive than Eulerian scheme (such as results from Toda) et al)

Nonhydrostatic system

$$
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - R\overline{T} \frac{\partial Q}{\partial x}
$$

$$
\frac{\partial Q}{\partial t} = -u \frac{\partial Q}{\partial x} - \gamma \left(\frac{\partial u}{\partial x}\right)
$$

For Riemann solver, we let the above be

$$
\frac{\partial}{\partial t} \begin{pmatrix} Q \\ u \end{pmatrix} + \begin{pmatrix} u & \gamma \\ R\overline{T} & u \end{pmatrix} \frac{\partial}{\partial x} \begin{pmatrix} Q \\ u \end{pmatrix} = 0
$$

 $\frac{\partial R_1}{\partial t} = -c_1 \frac{\partial R_1}{\partial x}$ $\frac{\partial R_2}{\partial t} = -c_2 \frac{\partial R_2}{\partial x}$ $\partial\!x$

$$
or \frac{dR_1}{dt} = 0
$$
\nwhere

\n
$$
\frac{dR_2}{dt} = 0
$$

 $R_1 = \sqrt{R\overline{T}/\gamma}Q + u$ $R_2 = \sqrt{R\overline{T}/\gamma}Q - u$ $c_1 = u + \sqrt{\gamma R T}$ $c_2 = u - \sqrt{\gamma R T}$

The initial acoustic spread

 $q(x)$, CFL=0.8

Henry Juang - 2016

After 800s with different CFL

 $q(x)$, t=800s

Henry Juang - 2016

 $\boldsymbol{\mathsf{R}}$

2D SWE on spherical coordinates can be written as

$$
\frac{\partial u}{\partial t} + u \frac{1}{a \cos \phi} \frac{\partial u}{\partial \lambda} + v \frac{1}{a} \frac{\partial u}{\partial \phi} + \frac{g}{a \cos \phi} \frac{\partial H}{\partial \lambda} - \left(f + \frac{u \tan \phi}{a} \right) v = 0
$$

$$
\frac{\partial v}{\partial t} + u \frac{1}{a \cos \phi} \frac{\partial v}{\partial \lambda} + v \frac{1}{a} \frac{\partial v}{\partial \phi} + \frac{g}{a} \frac{\partial H}{\partial \phi} + \left(f + \frac{u \tan \phi}{a} \right) u = 0
$$

$$
\frac{\partial h}{\partial t} + u \frac{1}{a \cos \phi} \frac{\partial h}{\partial \lambda} + v \frac{1}{a} \frac{\partial h}{\partial \phi} + \frac{h}{a \cos \phi} \left(\frac{\partial u}{\partial \lambda} + \frac{\partial v \cos \phi}{\partial \phi} \right) = 0
$$

where

$$
u = a\cos\phi \frac{d\lambda}{dt}
$$

\n
$$
v = a\frac{d\phi}{dt}
$$

\n
$$
H = h + h_s
$$

\n
$$
u = a\cos\phi \frac{\partial}{\partial\lambda} = \frac{\partial}{\partial\phi'}
$$

\n
$$
v = a\frac{d\phi}{dt}
$$

\n
$$
v = a\frac{d\phi}{dt}
$$

\n
$$
v = a\frac{d\phi}{dt}
$$

Henry Juang - 2016

rewrite the previous SWE into

$$
\frac{\partial}{\partial t}\begin{pmatrix} h \\ u \\ v \end{pmatrix} + \begin{pmatrix} u & h & 0 \\ g & u & 0 \\ 0 & 0 & u \end{pmatrix} \frac{\partial}{\partial \lambda'} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \begin{pmatrix} v & 0 & h \\ 0 & v & 0 \\ g & 0 & v \end{pmatrix} \frac{\partial}{\partial \phi'} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \begin{pmatrix} \frac{\tan \phi}{a} hv \\ -fv - \frac{\tan \phi}{a} uv + g \frac{\partial h_s}{\partial \lambda'} \\ fu + \frac{\tan \phi}{a} uu + g \frac{\partial h_s}{\partial \phi'} \end{pmatrix} = 0
$$

Then dimensional split into

$$
\frac{\partial}{\partial t} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \begin{pmatrix} u & h & 0 \\ g & u & 0 \\ 0 & 0 & u \end{pmatrix} \frac{\partial}{\partial \lambda} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ -fv - \frac{\tan \phi}{a} uv + g \frac{\partial h_s}{\partial \lambda'} \\ fu + \frac{\tan \phi}{a} uu + g \frac{\partial h_s}{\partial \phi'} \end{pmatrix} = 0
$$
\n
$$
\frac{\partial}{\partial t} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \begin{pmatrix} v & 0 & h \\ 0 & v & 0 \\ g & 0 & v \end{pmatrix} \frac{\partial}{\partial \phi} \begin{pmatrix} h \\ u \\ v \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -2\frac{\tan \phi}{a} hv \\ -fv - \frac{\tan \phi}{a} uv + g \frac{\partial h_s}{\partial \lambda'} \end{pmatrix} = 0
$$
\n
$$
fu + \frac{\tan \phi}{a} uu + g \frac{\partial h_s}{\partial \phi'} \end{pmatrix}
$$

Henry Juang - 2016 \sim 2008 \sim 2016

From latitudinal direction, we have

$$
\frac{\partial}{\partial t} \begin{pmatrix} h \\ u \end{pmatrix} + \begin{pmatrix} u & h \\ g & u \end{pmatrix} \frac{\partial}{\partial \lambda'} \begin{pmatrix} h \\ u \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ f + \frac{\tan \phi}{a} u \end{pmatrix} v + \frac{1}{2} \begin{pmatrix} 0 \\ g \frac{\partial h_s}{\partial \lambda'} \end{pmatrix} = 0
$$

$$
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial \lambda'} + \frac{1}{2} \left(f + \frac{\tan \phi}{a} u \right) u + \frac{1}{2} \left(g \frac{\partial h_s}{\partial \phi'} \right) = 0
$$

So we need matrix L^{-1} and L to satisfy following

$$
L^{-1}\begin{pmatrix} u & h \\ g & u \end{pmatrix} L = \begin{pmatrix} C_1 & 0 \\ 0 & C_2 \end{pmatrix} \qquad & L L^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

to diagonalize to get eigenvalues by

$$
\begin{pmatrix} u & h \\ g & u \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = C \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$

80
$$
\begin{pmatrix} u & h \\ g & u \end{pmatrix} - \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0
$$

80
$$
\begin{pmatrix} C_1 = u + \sqrt{gh} \\ C_2 = u - \sqrt{gh} \end{pmatrix}
$$

In summary, we have three equations in advection form as

$$
\frac{\partial R_1}{\partial t} + C_1 \frac{\partial R_1}{\partial \lambda'} - \frac{1}{4} \left[f + \frac{\tan \phi}{a} u \right] v + \frac{1}{4} \frac{\partial g h_s}{\partial \lambda'} = 0
$$
\n
$$
\frac{\partial R_2}{\partial t} + C_2 \frac{\partial R_2}{\partial \lambda'} + \frac{1}{4} \left[f + \frac{\tan \phi}{a} u \right] v - \frac{1}{4} \frac{\partial g h_s}{\partial \lambda'} = 0
$$
\n
$$
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial \lambda'} + \frac{1}{2} \left(f + \frac{\tan \phi}{a} u \right) u + \frac{1}{2} g \frac{\partial h_s}{\partial \phi'} = 0
$$
\n
$$
C_1 = u + \sqrt{gh}
$$
\n
$$
C_2 = u - \sqrt{gh}
$$

then we solve R and v by C and u with semi-Lagrangain

$$
R_1^a = R_1^d + \frac{\Delta t}{4} f_m v^m - \frac{\Delta t}{4} \left(\frac{\left(gh_s\right)^a - \left(gh_s\right)^d}{\left(\lambda^m - \lambda^d\right)} \right)
$$
\n
$$
f_m = \left(f + \frac{\tan\phi}{a} u \right)^m
$$
\n
$$
R_2^a = R_2^d - \frac{\Delta t}{4} f_m v^m + \frac{\Delta t}{4} \left(\frac{\left(gh_s\right)^a - \left(gh_s\right)^d}{\left(\lambda^m - \lambda^d\right)} \right)
$$
\n
$$
h^{t + \Delta t} = \frac{1}{g} \left(\frac{R_1^{t + \Delta t} + R_2^{t + \Delta t}}{2} \right)^2
$$
\n
$$
v^a = v^d - \frac{\Delta t}{2} f_m u^m - \frac{\Delta t}{4} \left(g \frac{\partial h_s}{\partial \phi'} \right)^a + \left(g \frac{\partial h_s}{\partial \phi'} \right)^d \right)
$$
\n
$$
u^{t + \Delta t} = R_1^{t + \Delta t} - R_2^{t + \Delta t}
$$

The same procedure in latitudinal direction. Then

The wavenumber 4 Rossby-Haurwitz wave on sphere as case 6 of Williamson et al 1992 is tested.

The non-iteration dimensional-split semi-Lagrangian is used for solving the equation as mentioned. Reduced Gaussian grid is carried as model grid. Equal latitide/longitude A grid is utilized for splitting.

Cubic Spline under tension is used for interpolation. No mass conservation is considered yet. No polar filter is applied yet.

H(m) for day 0 (color) and day 7.9 (mono) 128x64x600

Henry Juang - 2016

24

H(m) for day 8 (color) and day 16 (mono) 128x64x600

H(m) for day 16 (color) and day 24 (mono) 128x64x600

$V(m/s)$ for day 0 (color) and day 7.9 (mono) $128x64x600$

/(m/s) for day 0 (color) and day 16.25 (mono) 128x64x600

Henry Juang - 2016

2D nonhydrostatic tests in x-z with isotherm

$$
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - R\overline{T} \frac{\partial Q'}{\partial x}
$$
\n
$$
\frac{\partial w}{\partial t} = -u \frac{\partial w}{\partial x} - w \frac{\partial w}{\partial z} - R\overline{T} \frac{\partial Q'}{\partial z}
$$
\n
$$
\frac{\partial Q'}{\partial t} = -u \frac{\partial Q'}{\partial x} - w \frac{\partial Q'}{\partial z} - \gamma \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) + \frac{g w}{R\overline{T}}
$$

where

$$
\frac{\partial Q}{\partial z} = -\frac{g}{R\overline{T}}
$$

$$
Q = \overline{Q} + Q'
$$

30

2D tests in x-z (non-forcing) $- Q'$ (t=30s)

GHDS: COLA/IGES

GHDS: COLA/IGES

2D tests in x-z (non-forcing) - Q' (t=60s)

32

Discussion

- 1D system is impeccable.
- 2D system should be evaluated carefully
	- CFL >1 shows distortion
	- Splitting error?
- While 2D has no problem, 3D system can be done by applying splitting method, do 2D in horizontal first then 1D in vertical.
- Since it becomes an advection equation, semi-Lagrangian with splitting can be used to solve it with stable integration.