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Abstract 

Most forecast systems possess systematic biases because of the crude representation of model physics and 

dynamics to the real atmosphere. Focusing on short-range probabilistic quantitative precipitation forecasts (PQPFs) 

for typhoons, this study explores the effect of calibration on the discrimination ability and maximum economic value 

(EVmax) based on the Local Analysis and Prediction System (LAPS) ensemble prediction system (EPS) operated at 

Central Weather Bureau in Taiwan. 

Results show that the discrimination ability, which can be assessed by relative operating characteristic (ROC), and 

EVmax of an EPS are insensitive to forecast bias. This implies that improving reliability via calibration cannot increase 

the discrimination and EVmax of a forecast system. However, the optimal probability threshold (Pt) for users to take 

preventive action and obtain their EVmax is different when adopting calibrated or uncalibrated forecasts. In other words, 

biased forecasts will not prevent users from obtaining their EVmax if an appropriate Pt is adopted. When uncalibrated 

forecasts are adopted, the optimal Pt should be determined based on the past long-term statistics of EV. 

Experiments have been conducted to verify that ROC is insensitive to the linear property of a calibration method 

or even the accuracy of the calibration results. That is, the discrimination ability almost remains the same after a linear 

or nonlinear calibration, even though forecast biases cannot be properly corrected during the calibration process. This 

is because calibration only corrects the precipitation amount instead of modifying the rainfall pattern, which is 

controlled by the model physics/dynamics processes and is associated more with the discrimination of the forecasts. 

Keywords: probabilistic quantitative precipitation forecasts (PQPFs), relative operating characteristic (ROC), 

economic value (EV)  
 

1. Introduction 

The quality of an ensemble prediction system (EPS) 

can be quantitatively assessed by a host of verification 

metrics, such as the spread-skill relationship, the rank 

histogram, the reliability diagram, the relative operating 

characteristic (ROC), the Brier skill score (BSS), and the 

rank probability skill score (RPSS). Different verification 

methods are designed to assess different characteristics 

(or attributes) that contribute to the quality of a forecast, 

such as accuracy, reliability, discrimination, skill, and so 

forth. The discrimination (i.e., the ability to discriminate 

between events and non-events) of ensemble probabilistic 

forecasts (EPFs) can be measured by the ROC, which is 

based on the signal detection theory (SDT; Harvey et al. 

1992) and is widely used in the fields of economy and 

social sciences, such as psychology and medicine, and 

was introduced to meteorology by Mason (1982). Unlike 

reliability diagrams conditioned on the forecasts, the ROC 

is conditioned on the observations. Therefore, the ROC is 

a good partner to the reliability diagram.  

In addition to the forecast quality, one should also 

consider the possible economic benefit in the daily 

decision-making process of users when measuring the 

usefulness of weather forecasts. In this study, we used the 

relative economic value (EV; Richardson 2000) to assess 

the economic benefit of users, which is defined as the 

reduction in expected expense over the use of purely 

climatological information relative to the reduction that 

would be obtained by using perfect forecast. Murphy 

(1977) showed that for a perfectly reliable forecast system 

(i.e., without forecast bias), users can obtained the 
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maximum EV (EVmax) if they adopted the probability 

threshold (Pt) equal to their cost–loss ratio (r). The choice 

of Pt converts the EPF to a deterministic forecast, which 

treats the forecast with the probability greater than Pt as 

the occurring event, and users can take preventive actions 

based on the Pt, such as shutting down roads, harvesting 

crops in advance, and suspending work and school.  

Several studies (Richardson 2001; Zhu et al. 2002) 

indicate that the ROC is closely related to the EV, and 

Chang et al. 2014 shows that the potential EV (the area 

under the curve of EVmax) provided by a forecast system 

is mainly determined by the discrimination ability of the 

same system. In addition, Chang et al. 2012 shows that a 

biased forecast system, such as the LAPS EPS, can still 

have good discrimination. Based on these interesting 

results, this study focuses on the effect of calibration on 

the ROC and EVmax since most forecast systems have 

systematic biases and need calibration before being used 

by users. This purpose of this study is to explore whether 

a calibration procedure could improve the discrimination 

ability of a forecast system and thus increase the EVmax.  

This paper is organized as follows: Section 2 

introduces the Local Analysis and Prediction System 

(LAPS) ensemble prediction system (EPS) and data. 

Section 3 describes the methodology for computing ROC 

and EV, as well as the linear regression method used to 

calibrate the forecast bias of LAPS EPS. Section 4 

presents the effects of calibration on ROC and EVmax. The 

sensitivity of ROC curve to the form of calibration are 

also discussed in Section 5. Finally, a summary is 

provided in Section 6. 

2. LAPS EPS and data 

The 0-6 h probabilistic quantitative precipitation 

forecasts (PQPFs) used in this study were generated from 

ensemble forecasts based on the LAPS. By adopting 

diabatic data assimilation, the LAPS mitigated the spin-

up problem and performed reasonable precipitation 

forecasts during the early stage of a forecast period. The 

LAPS PQPFs were operationally generated every 3 h at 

the Central Weather Bureau (CWB) in Taiwan. To 

produce four basic multi-model ensemble members, the 

LAPS EPS adopted two types of background states, 

including the forecasts of the Global Forecast System 

(GFS) at the National Centers for Environmental 

Prediction (NECP) and the non-hydrostatic forecast 

system (NFS) at the CWB, to construct two sets of 

analysis fields with a horizontal resolution of 9 km, and 

then initializes two mesoscale models, including the 

MM5 and WRF/ARW models. For each of these basic 

members, the EPS adopted two more members initialized 

from the analyses generated three and six hours earlier. 

Therefore, in total, 12 time-lagged multi-model members 

are available and the PQPFs used in this study are derived 

from this 12-member LAPS EPS. Chang et al. (2012) 

showed that the LAPS EPS has a good spread-skill 

relationship and skillful discrimination ability, and thus 

can be regarded as an EPS with good quality and 

predictive capability. The data used in this study (same as 

in Chang et al. 2012) for evaluating the ROC and EV 

include a total of 148 cases of 0–6 h PQPFs based on all 

typhoon cases in 2008 and 2009.  

A calibration method based on linear regression 

(Yuan et al. 2008) has been used to calibrate the wet-

biased PQPFs. Chang et al. (2012) show that this 

calibration method successfully corrects the wet bias and 

improves the post-processing forecast skill. 

3.  Methodology 

a. Relative operating characteristic (ROC) 

The ROC has been widely used in meteorology to 

study the potential usefulness of a forecast system. The 

ROC was derived from the SDT (Harvey et al. 1992), 

which asserts that the uncertainty of the occurrence and 

non-occurrence of an event can be described by the 

relative variation of two Gaussian probability 

distributions: one (i.e., the event or signal distribution) 

represents the probability distribution of evidence 

strength associated with the occurrence of the event; the 

other (i.e., the nonevent or noise distribution) represents 

the probability distribution of evidence strength 

associated with the non-occurrence of the event. The 

occurred and non-occurred observation and forecast 

events are usually summarized by a 2×2 contingency table 

(Table 1). The forecast performance can be categorized 

based on the relative frequencies of four different 

outcomes: the hit (h), miss (m), false alarm (f) and correct 

rejection (c) and h + m + f + c = 1. Given the criterion of 

a decision, two independent conditional probabilities can 

be generated based on Table 1: the hit rate (HR=h/(h+m)) 

is the probability of predicting an event given that the 

event occurs, and the false alarm rate (FAR=f/(f+c)) is the 

probability of predicting an event given that the event 

does not occur.  

The ROC curve for the EPFs is constructed using N 

pairs of (HR, FAR) for N Pt values by plotting HR (in the 
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y-axis) against FAR (in the x-axis). If the (HR, FAR) 

points bunch in the upper-left corner of the ROC plot (i.e., 

a large HR and small FAR), the events and non-events can 

be clearly distinguished, i.e., the forecast system has good 

discrimination for both events and nonevents. If the ROC 

plot is diagonal-dominated, the values of HR and FAR are 

comparable, suggesting that the probability distributions 

of events and non-events almost overlap and cannot be 

discerned. Based on this SDT idea, the area under the 

ROC curve, called the ROC area, is used to represent the 

ability of the forecasts to discriminate between events and 

nonevents. The ROC area ranges from 0 to 1, where 1 

indicates a perfect forecast. Forecasts with skillful 

discriminating ability have ROC areas greater than 0.7 

(Buizza et al. 1999), and the forecasts adopting 

climatology are unskillful with the ROC area of 0.5. 

Further details can be found in the references (Wilks 

2006). 

b. Economic Value (EV) 

The EV of a forecast system (Richardson 2000) is 

defined as: 

perfectatec

forecastatec

EE

EE
EV






lim

lim .  (1) 

where Eclimate, Eforecast and Eperfect are the expected expenses 

of a user who takes preventive action based on the 

climatological information, a forecast system, and a 

perfect deterministic forecast system, respectively. 

According to the above definition, the EV can be 

interpreted as the relative performance taking the 

climatological information as a baseline. For example, if 

a perfect forecast can save the user 100 dollars, then a 

forecast system with economic value EV will save the 

user 100×EV dollars. Richardson (2000) further showed 

that EV can be expressed as: 
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Equation (2) shows that EV is related not only to the 

FAR and HR of a forecast system but also to the 

climatological frequency ( o ) of a weather event and the 

cost-loss ratio (r) of a user. Since ROC is defined by FAR 

and HR, eq. (2) also indicates that EV and ROC are 

associated (Zhu et al. 2002).  

c. Linear regression (LR) method  

Following Yuan et al. (2008), the LR method is used 

for calibrating LAPS PQPFs. The LR equation is 

expressed as: 

P(x,t) = a +
i

M

i

i fb
1

(x,t).   (3) 

where M=7, fi (x,t), i= 1, 2, …, 7 are the seven ordinal 

ensemble precipitation probabilities centered at the 

calibration threshold, P(x,t) is the corresponding observed 

precipitation probability, and a is the error residual. The 

LR method successfully corrected the wet bias of LAPS 

PQPFs and improved forecast reliability and skill (Chang 

et al. 2012). 

4. Effect of calibration on ROC and 

maximum EV 

Most forecast systems possess systematic biases 

because of the incompleteness of model physics and 

dynamics. The LAPS PQPFs have an obvious wet bias, 

and the bias becomes more apparent with the increasing 

precipitation intensity (Chang et al. 2012). This section 

explores the effect of calibration on the ROC and EV of a 

forecast system. 

Figure 1a shows that the ROC curves before and 

after calibration at the 20 mm (6 h)-1 precipitation 

threshold are very similar. During the calibration process, 

the forecast probability (Pf) was adjusted to yield superior 

consistency between the Pf and the observed frequency 

(i.e., improving the reliability). However, the 

discrimination of the EPS has not been improved through 

the calibration procedure. Therefore, the (HR, FAR) 

points corresponding to the calibrated Pf on the ROC 

curve only shift along the curve derived from uncalibrated 

PQPFs. In other words, with or without the calibration, 

the LAPS PQPFs possess the same discrimination ability.  

Figure 1b compares the distribution of EVmax from 

the LAPS PQPFs with and without calibration and also 

the optimal Pt that users with different r must adopt to 

achieve their EVmax. If an appropriate Pt is adopted, the 

EVmax from the LAPS PQPFs before and after calibration 

almost did not change. However, if adopting un-

calibrated PQPFs, the chosen optimal Pt is higher than the 

theoretical value due to the wet bias of LAPS PQPFs. This 

will prevent users from achieving their EVmax if they 

adopt the theoretical Pt as their optimal Pt. For example, 

the theoretical Pt for users with r = 5/12 should be 5/12; 
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however, when un-calibrated PQPFs are adopted, 

prevention is only necessary when Pf ≥ 9/12 because of 

the wet bias. Therefore, taking action at Pf = 5/12 (over 

confidence in the forecast) will result in over-prevention, 

which wastes money and reduces EV. Therefore, when 

un-calibrated PQPFs are adopted, the optimal Pt must be 

determined based on the past long-term statistics of 

economic value.  

The analyses of ROC and EV also confirm that 

reliability and discrimination are two independent 

statistical characteristics to describe the performance of a 

forecast system. Although a forecast system may achieve 

perfect reliability through calibration, its discrimination, 

which is reflected in the ROC area and EVmax, is not 

affected by calibration. This is expectable since 

calibration to improve the reliability of a forecast system 

only corrects the precipitation amount instead of 

modifying the rainfall pattern, which is controlled by the 

model physics/dynamics processes and is more associated 

with the discrimination of the forecasts. Although ROC 

and EVmax are both insensitive to forecast bias, a 

systematic bias causes the real optimal Pt to deviate from 

the theoretical one. Therefore, directly using a theoretical 

optimal Pt for the biased (i.e., not perfectly reliable) 

ensemble probabilistic forecasts (EPFs) will implicitly 

increase the Eforecast, and thus prevent the users to reach 

their EVmax. 

5. Sensitivity of ROC curve to the form of calibration 

In this section, we explore the sensitivity of the ROC 

curve to the form of the calibration. The purpose of the 

sensitivity test is to confirm that the discrimination ability, 

measured by the ROC area, is a potential characteristic of 

a forecast system and cannot be modified via the 

calibration process. Three sensitivity experiments are 

conducted: (1) After the eight regression coefficients are 

derived, the coefficient for the ensemble probability at the 

calibration threshold is reset to 0 (i.e., b4 = 0). (2) Instead 

of the LR equation, a nonlinear equation is used: 

P(x,t) = a +𝑏1[𝑓1(𝑥, 𝑡)]2+
i

i

i fb


6

2

(x,t)+ 𝑏7[𝑓7(𝑥, 𝑡)]2  (4) 

Because the values of the coefficients b1 and b7 are 

larger than the others, we modified the LR equation to the 

nonlinear equation [eq. (4)] with quadratic terms at the 

first and seventh thresholds. (3) After the eight 

coefficients in eq. (3) are derived, the error residual term 

is reset to 0 (i.e., a = 0). This has a substantial effect on 

the correction of biased forecasts. 

It is shown that the ROC curves before and after 

calibration overlap in all the three sensitivity experiments 

(Fig. 2), Therefore, the ROC areas almost remain the 

same after a linear or nonlinear calibration, even the 

forecast biases cannot be properly corrected during the 

calibration process (such as in sensitivity experiments (1) 

and (3)). The result shows that the discrimination ability 

of a forecast system is insensitive to the reliability of the 

same system. 

6. Summary 

Most forecast systems possess systematic biases 

because of the incompleteness of model physics and 

dynamics. Focusing on short-range PQPFs for typhoons, 

this study explores the effect of calibration on the 

discrimination ability and EVmax based on the LAPS EPS 

operated at Central Weather Bureau in Taiwan. 

Results show that discrimination ability and EVmax 

of a forecast system are insensitive to forecast bias. 

Calibration, though improving the reliability, has no 

effect on increasing the discrimination and EVmax of a 

forecast system. In addition, the biased forecast with 

imperfect reliability will not prevent users from achieving 

their EVmax if the appropriate Pt can be adopted. Because 

of the significant dominant wet bias in the LAPS EPS, the 

real optimal Pt for users to achieve their EVmax deviates 

from the theoretical value, which is equal to his/her r. 

Such deviation increases largely as the rainfall intensity 

increases, because the wet bias of LAPS PQPFs becomes 

more obvious when the rainfall threshold is larger.   

Nevertheless, by adopting the real optimal Pt, the users 

can still obtain the same EVmax by referencing the LAPS 

PQPFs either with or without bias correction. When 

uncalibrated EPFs are adopted, the optimal Pt should be 

determined based on the past long-term statistics of EV in 

order to achieve EVmax.  

Experiments have also been conducted to verify that 

ROC is insensitive to the linear property of a calibration 

method or even the accuracy of the calibration results. 

That is, the discrimination ability almost remains the 

same after a linear or nonlinear calibration, even though 

forecast biases cannot be properly corrected during the 

calibration process. This is because calibration only 

corrects the precipitation amount instead of modifying the 

rainfall pattern, which is controlled by the model 
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physics/dynamics processes and is associated more with 

the discrimination of the forecasts. 
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TABLE 1. Contingency table for forecasts and observations of a binary event. 

             Forecast / action 

     Yes                No  

Observation  

Yes  

 

No  

Hit (h)  

Mitigated loss (C+Lu)  

Miss (m)  

Loss (Lp+Lu)  

False alarm (f)  

Cost (C)  

Correct rejection (c)  

No cost (N)  

           
FIG. 1. (a) The ROC curves and (b) maximum economic value (EVmax; curves) and optimal probability threshold (Pt; 

circles) against the cost-loss ratio (r) before (blue) and after (pink) calibration at the 20 mm (6 h)-1 precipitation 

threshold. 

 

FIG. 2. The ROC and reliability curves before (blue curves) and after calibration (red curves) at the 20 mm (6 h) -1 

threshold. The b4 is reset to zero after the coefficients are derived in the LR equation (left column), adopting the 

nonlinear calibration method [Eq. (4); middle column] and the error residual term is reset to 0 (i.e., a = 0) after the 

coefficients in Eq. (3) are derived (right column). 


