

利用衛星資料推估氣象站雲量觀測之可行性分析

齊祿祥 謝瑩薰

氣象衛星中心 中央氣象局

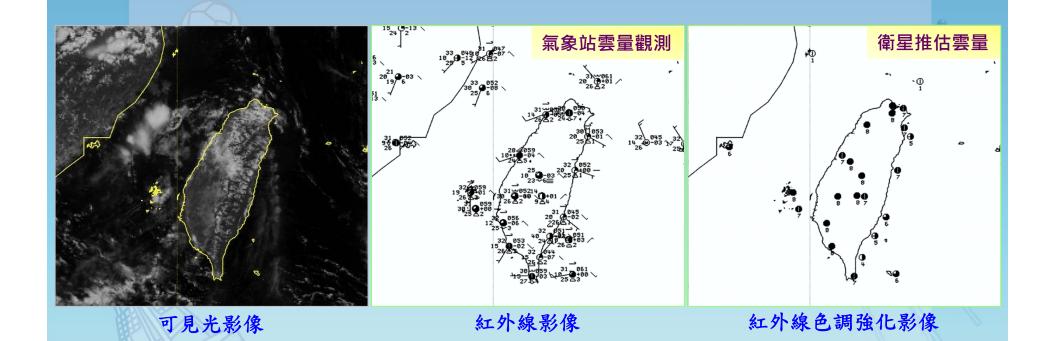
大 綱

- (一) 前言
- (二) 資料資料來源與研究方法
- (三) 衛星推估氣象站總雲量產品
- (四) 衛星推估與氣象站觀測雲量統計分析
- (五)討論
- (六) 結論與未來工作

(一) 前言

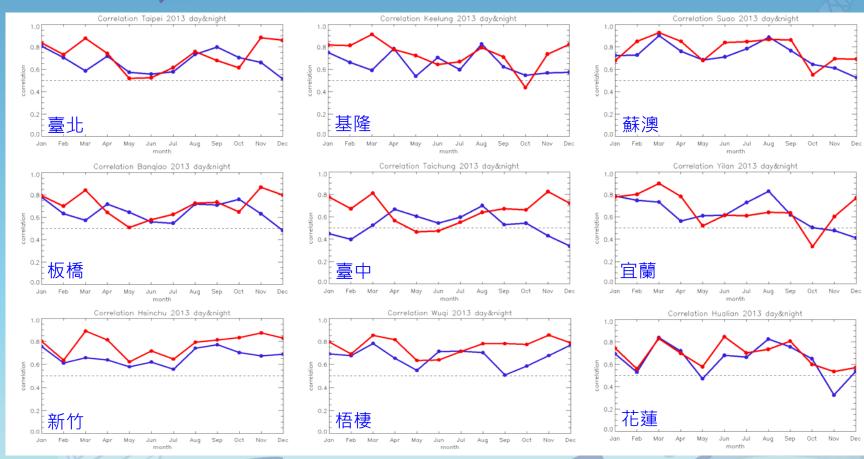
- 國際間,為提升氣象觀測系統的準確性與氣象 站網密度,逐步建置各式自動化觀測設備。
- 現行地面氣象站之雲、能見度與天氣狀況觀測, 仍維持傳統人工目視之定性觀測。
 - ❖ 發展氣象要素之自動化定量觀測技術,將可滿足未來現代化氣象觀測需求。

一(二) 資料資料來源與研究方法


▼ 發展自動化觀測

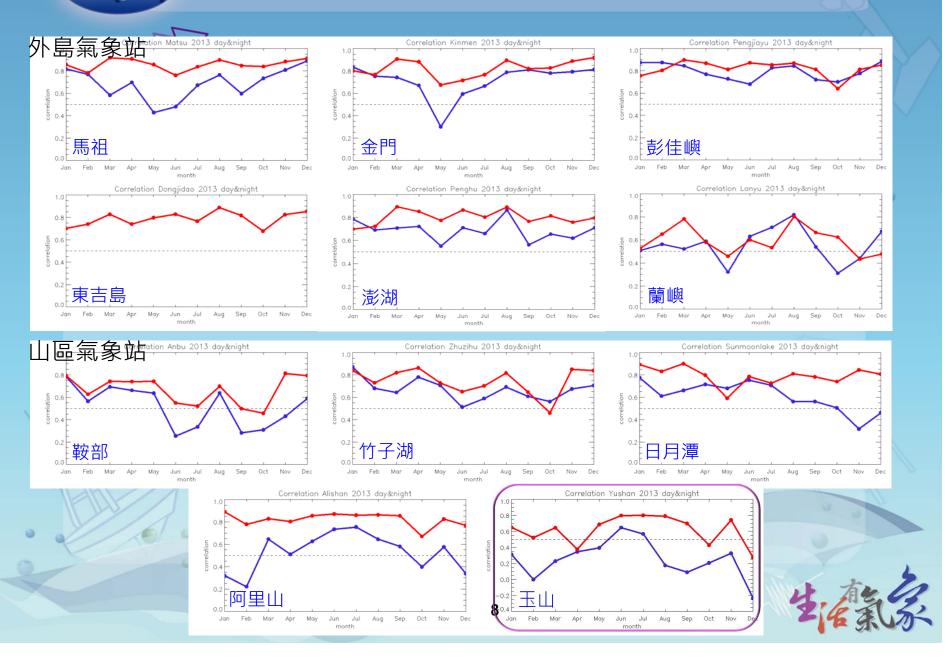
- ♥ 2013年1~12月全年本局包括三、四等之27個 人工氣象站之雲量觀測資料。
- 衛星之雲量推估方法:
 - 採用紅外線數據資料之紅外線第1、2頻道與第1、4頻道亮度 溫度偏差門檻值演算法(齊,2008)。
- ♥採用皮爾森相關係數分析法 (Pearson correlation coefficient) °
- ◆ 觀測總雲量與衛星推估雲量,都轉換為10分 量計算;氣象站觀測天空狀況不明,該時段之 雲量觀測資料,不列入統計。

(三) 衛星推估氣象站總雲量產品



2014年8月6日0300UTC日本MTSAT2地球同步衛星影像

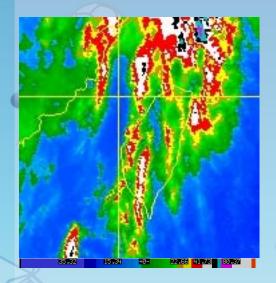
本島平地氣象站

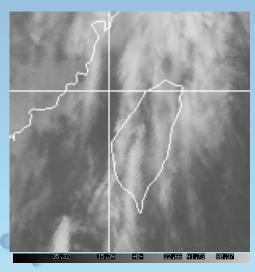


		2013年各氣象站觀測雲量與衛星推估雲量之相關係數(r)						
	氣象站	日間	夜間	平均相關係數				
	板橋	0.705	0.667	0.670				
	鞍部	0.656	0.480	0.573				
	台北	0.746	0.678	0.709				
	竹子湖	0.744	0.652	0.696				
	基隆	0.729	0.678	0.709				
	彭佳嶼	0.846	0.814	0.830				
	花蓮	0.708	0.695	0.660				
	蘇澳	0.789	0.765	0.762				
	宜蘭	0.661	0.694	0.657				
	金門	0.848	0.754	0.810				
	東吉島	0.801	X					
	澎湖	0.813	0.690	0.748				
	台南	0.779	0.499	0.641				
	高雄	0.774	0.513	0.635				
	嘉義	0.735	0.512	0.640				
	台中	0.724	0.544	0.609				
	阿里山	0.829	0.525	0.709				
ı	大武	0.642	0.596	0.569				
	玉山	0.613	0.217	0.463				
	新竹	0.798	0.688	0.735				
	恆春	0.715	0.558	0.670				
	成功	0.738	0.671	0.690				
	蘭嶼	0.606	0.525	0.555				
	日月潭	0.826	0.570	0.714				
	台東	0.706	0.654	0.655				
	梧棲	0.785	0.685	0.739				
	馬祖	0.877	0.725	0.820				
	平均	0.748	0.617	0.680				

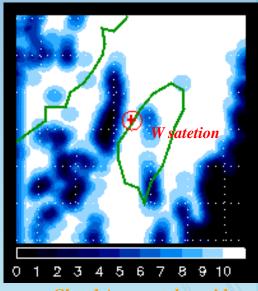
註:X:無觀測資料。

(五) 討論


- 梅雨季與冬季觀測雲量與衛星推估之相關性較低,主要可能因為梅雨季天氣系統較為活躍,夜間部分高層雲系,不易觀測所致;另外,在冬季時,天氣系統發展較不明顯,局部地區在此季節經常有霧發生,受到衛星資料之解析度與演算技術限制,而無法正確偵測。
- 同步衛星觀測時間間隔為30分鐘,衛星掃描經過臺灣的時間與氣象 站觀測時間約有10~30分鐘的落差,亦為兩者相關性的誤差來源。
- 日間與夜間雲量觀測的差異,可能來自於光線強弱變化的影響,造 成觀測人員在視覺反應上的影響(圖)。
- 玉山氣象站地屬高海拔氣象觀測站,由於其環境的特殊性,因此, 衛星推估雲量與氣象站觀測結果,在日、夜與季節變化的差異極為 明顯。


衛星與氣象站之雲量觀測差異

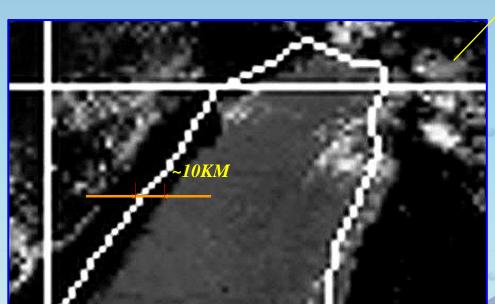
▽夜間觀測高層雲系影響


Case:2013年5月25日2032 UTC

Enhanced Infrared Image

Infrared Image

Cloud Amount by grid


資料來源	資料來源 觀測時間 雲量		經緯度	20
衛星	0525 / 2032Z	10		有一個
W站	0526 / 05LST	2	24.259 °N / 120.515 °E	6 15
	W 310			

衛星與氣象站之雲量觀測差異

▽地理定位偏差影響

結論與未來工作

- 衛星資料推估氣象站觀測雲量,日間相關性高於夜間;不論日、 夜變化因素,平均相關係數可達到0.68。
- 衛星雲量估計技術,未考慮雲頂/雲底發展高度、季節變化、地理定位偏差、觀測時間、觀測儀器限制等因素影響,與人工觀測存有明顯差異。
- 衛星觀測資料,不易受到日、夜變化與人為視覺差異影響,可 到更為客觀的雲量觀測數據。
- 為提升氣象觀測系統的準確性與氣象站網密度,發展自動化觀測。利用衛星遙測資料,將可輔助並滿足未來現代化氣象觀測需求。
- 2014年新世代地球同步氣象衛星具有多頻道與高時、空解析度 之觀測資料,可逐步改善衛星觀測精確度。

