Equatorial Rossby Wave in western North Pacific during Warm Season

Shi-Pei Hsu, Chung-Hsiung Sui, Lin Ching, Ching-Hsuan Wu Department of Atmospheric Science, National Taiwan University

> 2014 Conference on Weather Analysis and Forecasting 16 Sep, 2014

Outline

- Motivation, Objective, and Data
- **Part I**: Equatorial Rossby wave: Linear Theory and Observed Properties
- **Part II**: Different types of ER wave
- Summary

Motivation

 Significance of quasi bi-weekly oscillation in monsoon regions during warm seasons(e.g. WNP).

30

HF

ISO BW

(a)

12 10

12 10

1210

b.

Power

Density

1.2

0.8

0.6

0.3

Days 603020

Spectrum^t

(Kikuchi and Wang 2009) 24

Motivation

- Large-scale condition is favorable for TC genesis (TCG)
- Tropical wave(e.g. ER wave) grows via barotropical energy conversion and cumulus heating.
- MJO activity => modulate low-frequency field

Motivation

• It's complicated with each other => **multi-scale interaction** in WNP

Objective

Will ER have different behavior sitting on various background flow?
 Will different types of ER influence the TC genesis?

Data

Variables	Data sets	Period	Resolution
OLR	NOAA	2000 ~ 2010	• 2.5 [°] × 2.5 [°] • Daily data
u, v, Vorticity, divergency	ECMWF Interim	2000 ~ 2010	● 0.75 [°] ×0.75 [°] ● 6 hourly*

*6 hourly data are averaged to daily data

Part IEquatorial Rossby wave: Linear Theory and Observed Properties

Single-layered Free Shallow Water Model

(Matsuno 1966)

- Barotropic
- No basic state
- No moisture: adiabatic
- No forcing: free

Properties of Linear & Free Equatorial Rossby Wave

- 1) Symmetric alone equator
- 2) Amplitude decays with latitude
- 3) Maximum zonal wind along equator
- 4) Westward propagating

[ErOlr, ErVort, ErWind]

9

6

З

Phase Composite Of Observed ER wave Active Season

Background flow

- Seasonality
- Propagation
- Wavelength
- Phase speed
- Phase relationship
- Tilting of phase line
- Asymmetric

A closer look

[ErOlr, ErVort, ErWind]

Part II

Different Types of ER Wave and their Influence on TC Genesis

Er Olr Variance during Active Season

50° E 70° E 90° E 110° E 130° E 150° E 170° E 170° W 150° W 130° W 110° W 90° W 70° W 50° W 30° W 10° W

- In WNP, TC usually forms and propagates in ^{Longitude} 25 deg band, which is almost coincident with the ER's active region. They may interact with each other.
- ER provides positive low level vorticity, moisture convergence, convective heating, and high RH% enviroment.
- TC and ER are closely related.

Latitude

Quadrants for Low-frequency (Ching-Hsuan Wu) Field and Er Wave (May to Sep, 2000 to 2009)

(163, 34.2%) (314, 65.8%) (TC Numbers: Perctentage)

	TCd	TCn	Total
All TCs	(163) 34.2%	(314) 65.8%	(477)
TCG	(122)	(178)	(300)
with ER+	40.7%	59.3%	62.9%
TCG	(41)	(136)	(177)
with ER-	23.2%	76.8%	37.1%

Type1 ER Composite 850mb_ErOlr(shaded)Vort(Contour)Wind

(134 cases) MeanErLat=17.9 deg N

- Asymmetric
- Tilting of phase line
- Wavelength
- Phase relationship

Type2 ER Composite

(67 cases) MeanErLat=14.8 deg N

• Unstable ER

ErVor(shaded)Div(contour)Wind

Vertical Structure of the Two Type

	TCd	TCn	Total
All TCs	(163) 34.2%	(314) 65.8%	(477)
TCG	(53)	(81)	(134)
with type1	39.6%	60.4%	
TCG	(29)	(38)	(67)
with type2	43.3%	56.7%	

1) Stronger zonal wind

convergence

- 2) Weaker Subtropical high 30N
- 3) Easterly vertical U shear

Shaded: Lf U Conv Contour: Lf Vert U Shear Vector: Lf Wind

- Type 2 is more unstable than type 1 Possibilities:
- Stronger zonal wind convergence => more barotropic energy conversion
 Weaker Subtropical high => Enhanced convection => coupled with wave => Diabatic heating
- 3) Easterly vertical U shear + diabatic heating
- => unstable wave(Xie and Wang 1996)

Summary II

- The large-scale condition in WNP warm season is favorable for TCG and growth of ER wave. TCG will be modulated by ER.
- Equatorial Rossby wave have positive contribution to TC genesis
- Stronger zonal wind convergence, weaker subtropical high, and easterly vertical U shear may lead to unstable ER wave type.

THANK YOU VERY MUCH!

- 在全部的 TC 以及 ER+ 比較 TCG 大小,呈現 ER 的 重要性。
- 主觀從伴隨 TC 的 ER 中挑出明顯的兩個 type
- Type1, 2 對 TCG 的影響。
- 比較兩個 type 的差異:水平結構、垂直結構
- •比較兩種 type 的低頻場
- 推論可能造就 type1, 2 的原因