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Abstract 

The so-called freak waves are exceptionally large, steep, and asymmetric waves whose heights 
usually exceed by 2.2 times the significant wave height. These waves, described as ‘holes in the sea’ or 
‘wall of waters’, have been long known to be notorious hazards to navigation vessels and marine 
structures. With little warning, these transient giant and steep waves can mysteriously occur from 
deep-water wave groups in random open seas. Many freak waves’ devastating impacts and sinister 
marine episodes have raised great interests in predicting their occurrence. Over the past two decades a 
great deal of efforts has been paid to examine the mechanisms that cause formation of freak waves. In 
this study, the purpose is to reproduce the potential threat in our coastal environment - generation of 
freak waves in a numerical wave tank. A higher-order non-hydrostatic model in a -coordinate system 
was developed. The model used an implicit finite difference scheme on a staggered grid to solve the 
unsteady Navier-Stokes equations with the free-surface boundary conditions simultaneously. Besides, 
an integral method was employed to resolve the top-layer non-hydrostatic pressure, allowing for 
accurately resolving free-surface wave propagation. Model accuracy was validated by linear/nonlinear 
progressive waves and nonlinear bi-chromatic deep-water wave groups. The model was then used to 
examine the two-dimensional and three-dimensional freak waves. Features of downshifting focusing 
location and wave asymmetry characteristics are predicted on the temporal and spatial domains of a 
freak wave. In the near future, an effective freak wave warming system could be developed by the 
present modeling framework together with sufficient field observation data. 
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I. Introduction 
Wave grouping is a prominent feature in 

the ocean. Wave-wave interactions resulting 
from non-linear coupling of wave components 
can cause a great shift of energy re-distribution, 
significantly influencing the evolution of 
deep-water wave groups. In the presence of 
near-resonant interactions, modulation of wave 
components occur and the wave groups 
thereafter become unstable. For instance, the 
shape of an initial wave group can evolve into 
massive wave pulses while a single carrier wave 
travels with a pair of side-bands. Similarly, 
bi-chromatic waves that consist of two waves 
with a small period difference can also evolve 
several interesting physical characteristics such 
as the asymmetric wave profile, the convergence 
of wave energy, the modulation (demodulation) 
processes, and the recurrence of initial state 
(Hwung and Chiang, 2005). In contrast to slowly 
modulated wave groups mentioned above, fast 

modulated waves appear in spatial-temporal 
focusing of wave-wave and wave-current 
interactions (Baldock et al., 1996; Wu and Nepf, 
2002; Wu and Yao, 2004). Owing to strong 
non-linearity in the modulated wave groups, the 
limiting focused wave crest is much larger than 
that predicted by linear wave theory (Baldock et 
al., 1996). Indeed, recently studies suggest that 
both slowly and fast modulated deep-water wave 
groups play an important role in the generation 
of freak waves that have cause numerous sinister 
marine episodes (Kharif and Pelinovsky, 2003). 
As a consequence, accurate prediction of the 
nature of non-linear deep-water wave groups is 
essential. 

The purpose of this paper is to reproduce 
the potential threat in our coastal environment - 
generation of freak waves in a numerical wave 
tank. An efficient and accurate non-hydrostatic 
model capable of simulating strongly modulated 
deep-water wave groups was developed. Model 
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accuracy was validated by linear/nonlinear 
progressive waves and nonlinear bi-chromatic 
deep-water wave groups. The model was then 
used to examine the two-dimensional and 
three-dimensional freak waves.  Model results 
regarding the evolution of non-linear deep-water 
wave groups are discussed. 

II. Non-hydrostatic Model 

The non-hydrostatic model (Young & Wu, 2010) 
solves the unsteady, incompressible, 
Navier-Stokes equations to simulate free surface 
wave motions based on the staggered finite 
difference Crank-Nicholson scheme in the 
transformed  domain. The implicit numerical 
algorithm relaxes the stability restriction of 
computational time steps in comparison to the 
explicit ones. Besides, the algorithm treats a 3D 
problem as a series of 2D vertical planes to yield 
block (hepta) diagonal system matrixes that can 
be solved directly without iterations. The 
boundary-fitted co-ordinate ensures an accurate 
representation of the free surface elevation and 
the irregular bottom topography. Most 
importantly, the top-layer pressure treatment 
using a cubic polynomial interpolation can 
provide further accuracy for phase velocity. The 
developed NHS model has been carefully 
validated against either analytical solutions or 
experimental data for various wave problems 
from shallow to deep water depth (Young et al., 
2009; Young & Wu, 2010), clearly 
demonstrating the model's efficiency 
(requirement of only 2~5 vertical layers) and 
accuracy (dispersive degree up to Kh = 3~15). 

III. Validation  
In this section we aim to examine the 

present model’s accuracy in simulating linear 
dispersion, wave non-linearity, and wave-wave 
interaction. We use a 2D vertical numerical wave 
tank with a length of 10 times wavelength and a 
still water depth 1 m. The sponge layer is used to 
absorb outgoing waves and minimize wave 
reflection. In the model, 40 cells per wave length 
and five stretched vertical layers are used to 
discretize the computational domain. The time 
step is determined by setting the Courant number 
Cr = 0.5, where c is the wave speed.  

1. Linear Dispersion 

Frequency dispersion is an essential 
property for water wave propagation. To 

examine the present model’s capability in 
predicting linear wave dispersion, three 
non-dimensional relatively deep-water wave 
conditions, i.e. Kh = , 3, and 5, are 
considered. An infinitesimal incident wave 
amplitude a/h = 0.001 is used to ensure linear 
wave condition. 

Fig. 1 compares the steady spatial profiles 
of free-surface displacement predicted by the 
present model, Young et al.’s model (2007), and 
Yuan and Wu’s model (2006), with the analytical 
solutions. It can be seen that all three models 
accurately predicts wave propagation for Kh =  
As the dimensionless relative water depth 
increases, the present model is capable resolve 
linear dispersion in the extremely deep-water 
condition (i.e., Kh = 5 ) while the other two 
models under-estimates wave length.  

2. Wave Non-linearity 
To examine the present model’s capability 

of simulating wave non-linearity, three wave 
steepness ranging from weak to strong 
non-linearity, i.e. aK =  = 0.10, 0.20, and 0.30, 
of progressive Stokes waves at Kh =  are 
considered. 

Fig. 2 shows the excellent comparison of 
free-surface displacement time series at x=3 
between the model results and analytical 
solutions based upon the fifth-order Stokes 
theory (Fenton, 1985). The present model 
faithfully predict vertically asymmetric wave 
profiles with a higher and narrower crest as well 
as a wider and less deep trough as wave 
steepness aK increases. Overall, both wave 
speed and amplitude are well resolved.  

3. Wave-wave Interaction 

The model is further validated against the 
bi-chromatic wave experiments of Hwung and 
Chiang (2005). We choose the different 
non-breaking experimental condition B11. The 
numerical tank is 300 m long with a constant 
water depth of 3.5 m. A horizontal grid spacing 
x = 0.2 m and five stretched vertical layers are 
used to discretize the computational domain. At 
the last 50 m of the tank, the sponge layer 
technique is applied to minimize wave reflection. 
Courant number Cr=0.1 is used to determine the 
time step. The total simulation time is 400 s. 

Fig. 3 compares the predicted wave 
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profiles. The initial wave trains at Kcx = 23 seem 
to be a linear superposition of two incident wave 
components. As the wave trains travel over a 
short distance, i.e. at Kcx = 58, the envelope has 
steep fronts and gently sloping rears, consistent 
with several other experimental results. In the 
consecutive stage Kcx = 114, the combination 
effects of frequency dispersion and non-linear 
effect result in energy focusing into the center of 
the wave group. Afterward, the de-modulation 
process of wave trains can be observed at Kcx = 
161, indicating a recurrence of initial stage. Until 
the end of the tank, the processes of modulation 
and de-modulation would cyclically repeat. The 
MLB model has a good phase agreement but 
under-estimates the wave amplitude, similar to 
those results in case B39. The FNLS model 
predicts better amplitude but fails to capture the 
phase. The patterns of predicted free-surface 
displacements at several stations, e.g. Kcx = 58, 
246, and 331, are totally different from those of 
the experimental data. In contrast to MLB and 
FNLS models (Chiang et al., 2007), the present 
non-hydrostatic model faithfully captures both 
the phase and wave amplitude. Overall, with the 
capability of resolving non-linearity and 
dispersion, the higher-order non-hydrostatic 
model clearly simulates the features of 
bi-chromatic wave trains. 

IV. Applications for Freak waves 
a numerical tank of 25m long with an 

undisturbed mean water depth of h = 0.6m is 

used. At the end of the tank, a combination of a 

5m sponge layer technique and a radiation is 

applied to minimize the wave reflection. At the 

inflow boundary condition, a deep-water spectral 

wave packet with 32 components ranging from 

0.6855 to 1.4745 s-1 is considered, based upon 

the experimental setup by Wu and Nepf (2002). 

In the model we use a spatial-temporal focusing 

method (Wu and Yao, 2004) to generate a freak 

wave. 

The predicted spatial profile of a 2D freak 

wave is demonstrated in Fig. 4(a), indicating the 

feasibility of the dispersive spatial-temporal 

focusing mechanism in forming a freak wave. A 

detailed velocity field of a freak wave shows a 

dramatic change of velocity near the focusing 

location, which could exert tremendous 

hydrodynamic force on structures. Fig. 4(b) 

compares the predicted time series of surface 

displacements and the linear solution by super 

positioning the wave components with the 

measured data by Wu and Nepf (2002). It can be 

found that the wave crest and trough by the 

linear solution is under-predicted 20% and 

over-predicted 25%, respectively. Similar results 

are also reported by Baldock et al. (1996), who 

reported the important nonlinear wave-wave 

interactions in the case of a focusing wave train. 

On the other hand, the simulated wave profile is 

in excellent agreement with the experimental 

data. In addition, the asymmetry between the 

wave crest and the wave trough can be described 

by a crest-and-trough asymmetry factor, i.e. 

c/(c -t) = 0.69, featuring a ‘‘wall of water’’ 

of a freak wave.  

Next, we further apply the model to predict 

a 3D spatially focusing freak wave. Figure 5(a) 

shows the perspective view of the wave field in 

the vicinity of the focusing event. Prior to the 

freak wave, that is t∗=−1 to −0.5s, one can 

clearly see a ‘hole in the sea’ that features an 

exceptionally large, steep, and asymmetric wave, 

that is the ‘wall of waters’. Consecutively, an 

extreme wave, freak wave, is rapidly developed 

at t∗=0s with the amplitude that is larger than 4 

or 5 times of the average wave height of the 

wave packet, which is the feature of freak waves. 

Shortly, the freak wave disappears in a second (t

∗ =1s), consistent with the short-live feature 

documented by field observations. Figure 5(b) 

shows that the model results of the time series 

free-surface elevation at x = xf =3.3m are in good 

agreement with experimental data. In particular, 

the model well predicts the surface 

displacements at different lateral locations, that 

is y=0, 0.3, 0.6, 0.9, and 1.5m of the wave crest. 

The water surface exhibits a distinctive crescent 

shape.  

V. Summary and Conclusions 
A -coordinate non-hydrostatic model 

with a new higher-order top-layer pressure 
treatment was developed. Accuracy of the model 
is carefully examined. It is shown that the model 
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using only five vertical layers is capable of 
resolving wave non-linearity up to aK = 0.30 and 
linear dispersion up to Kh = 15. 

For the bi-chromatic waves, stronger 
modulation and de-modulation processes occur 
due to larger wave steepness and smaller period 
difference. In contrast to MLB and FNLS 
models (Chiang et al., 2007), the non-hydrostatic 
model accurately predicts both wave amplitude 
and phase of the bi-chromatic waves. For the 
2D/3D focusing freak waves, similarly, larger 
wave steepness and narrower band-width lead to 
stronger non-linear wave-wave interactions. The 
transient behavior and energy transfer of 
focusing waves are faithfully represented by the 
model. The model results and the experimental 
data are in very good agreement.. Results will be 
reported later. 
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Fig. 1. Comparison of the predicted spatial 
free-surface displacement for (a) Kh = , (b) 3 
and (c) 5 : analytical solution (solid lines), 
Yuan and Wu’s model (X marks), Young et al.’s 
model (solid triangles), and the present model 
(open circles). 

 

 

 

 

 

 

Fig. 2. Comparison of the predicted free-surface 
displacement time series at x = 3 for (a) aK= 
0.10, (b) aK = 0.20, and (c) aK = 0.30: analytical 
solutions (solid lines) and model results (solid 
circles). 

 

 

 

 

 

 

Fig. 3. Comparison of the predicted free-surface 
displacement time series for case B11 among (a) 
the present model, (b) the MLB model, and (c) 
the FNLS model: experimental data (open 
circles) and model results (solid lines). 

 

 

 

 

(a) 

(b) 

Fig. 4. (a) The spatial free surface profile and 
velocity field at the focusing location and (b) 
comparison of the surface displacement time 
series at the focusing location by the model 
(solid line), linear solution (dashed line), and 
measured data (circles). 
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(a) 

(b) 

Fig. 5. (a) A perspective view for the evolution 
of a 3D spatially focusing freak wave and 
(b) Comparison of the predicted 
free-surface displacement time series along 
lateral direction (i.e. y=0, 0.3, 0.6, 0.9, and 
1.5 m) for 3D spatially focusing freak 
waves: experimental data (symbols) and 
five-layer model (lines) 

 

 

 

 

 

 

 

 

 


