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Abstract 

Due to the low predictability in severe weather prediction such as typhoon forecasting, it is important to develop 

a reliable short-range ensemble prediction system (EPS).This study aims to develop the short-range (0-6 h) 

probabilistic quantitative precipitation forecasts (PQPFs) of typhoons from time-lagged multimodel ensembles using 

the Local Analysis and Prediction System (LAPS). The ultimate goal is to provide valuable precipitation forecasts for 

typhoons based on the EPS.  

The LAPS EPS has a good spread-skill relationship and good discriminating ability. Therefore, though it is 

obviously wet-biased, the forecast biases can be corrected to improve the skill of PQPFs through a linear regression 

(LR) calibration procedure. Sensitivity experiments for two important factors affecting calibration results are 

conducted, including: (1) the experiments on different training samples, and (2) the experiments on the inconsistency 

of observation accuracy. The first point reveals that the calibration results are sensitive to the training samples. 

Calibration should be performed based on consistent forecast biases between training and validation samples. The 

second factor indicates that the accuracy of observation is inconsistent in the sea and land areas, and samples are 

dominated by the ocean ones. Therefore, individual calibration for these two areas is needed to ensure better calibration 

results. 

Keywords: probabilistic quantitative precipitation forecasts (PQPFs), verification, calibration, discriminating 

ability, spread-skill relationship  
 

1. Introduction 

Due to the low predictability in severe weather 

prediction such as typhoon forecasting, it is important to 

develop a reliable short-range ensemble prediction system 

(EPS). The EPS uses perturbed initial states or considers 

the physics as stochastic processes, which reflects the 

chaotic nature in the atmosphere. Averaging the ensemble 

forecasts from slightly perturbed initial conditions can 

filter out some unpredictable components of the forecast, 

and the spread among the forecasts can provide some 

guidance on the reliability of the forecasts. This is a 

fundamental transition and revolutionary change in the 

NWP development.  

Early research indicates that calibration is a critical 

procedure to correct forecast biases and enhance forecast 

skill in a biased forecast system. In this study, the 

verification results showed that the LAPS EPS was 

apparently wet-biased. Therefore, the LR method (Yuan 

et al., 2008) was used to correct forecast biases. 

This study (Chang et al., 2012) aims to develop the 

short-range probabilistic quantitative precipitation 

forecasts (PQPFs) of typhoons from time-lagged 

multimodel ensembles using the Local Analysis and 

Prediction System (LAPS). The ultimate goal is to 

provide valuable precipitation forecasts for typhoons 

based on the EPS. This report is organized as follows: 

LAPS and verified observation data are introduced in 

section 2. The LAPS ensemble configuration and PQPF 
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products are presented in section 3. Section 4 and section 

5 describe the verification results and sensitivity 

experiments on calibration. A summary is given in the last 

section. 

2.  Model and data  

The short-range forecast System LAPS has three 

main components, including the data ingestion, diabatic 

data assimilation, and mesoscale model forecast (Fig. 1). 

In the diabatic data assimilation, the products of cloud 

analysis could provide the initial fields with diabatic 

information, such as cloud liquid water, cloud ice, and 

vertical motions in the cloud-covered area. Therefore, the 

spin-up problem could be mitigated, and the ability of 

short-range precipitation forecasts could be largely 

improved.  

Regarding the observation data for precipitation 

verification, the radar-estimated rainfall data from the 

Quantitative Precipitation Estimation (QPE) and 

Segregation Using Multiple Sensors (QPESUMS) were 

used as observation data with 1.25 km horizontal 

resolution. Note that the precipitation estimation was 

calibrated with gauges in the land areas, but was not 

calibrated over the sea areas. 

3. LAPS ensemble configuration and PQPF 

products 

a.  Time-lagged multimodel ensemble configuration 

The background fields in the LAPS analysis and 

lateral boundary conditions are from the same sources, 

including the model forecasts of 1) the non-hydrostatic 

forecast system (NFS) at the Central Weather Bureau 

(CWB) and 2) the Global Forecast System (GFS) at the 

National Centers for Environmental Prediction (NCEP). 

There are two mesoscale models associated with LAPS, 

including the MM5 model and the WRF/ARW model. 

Therefore, totally four different forecast models can be 

used to generate multimodel ensemble forecasts with four 

members, including 1) LAPS-MM5:NFS (refers to 

LAPS-MM5 model with the background field from CWB 

NFS), 2) LAPS-MM5:GFS, 3) LAPS-WRF: NFS, and 4) 

LAPS-WRF: GFS.  

In addition to the multimodel configuration, the 

time-lagged configuration was adopted to increase the 

ensemble members. The LAPS EPS (Fig. 2) has four 

multimodel members and each member is initialized 

every three hours with the forecast length of 12 hours. 

Thus, for the 0-6 hr ensemble precipitation forecasts, 

there are three time-lagged members (the 0-6 hr, 3-9 hr, 

and 6-12 hr QPFs) available for each multimodel member, 

and four multimodel members totally build up the LAPS 

EPS of 12 members. 

b.  PQPF products  

The PQPFs were created based upon the 

precipitation forecasts from 12 members of the LAPS 

EPS at different thresholds. Fig. 3 shows the 0-6h PQPFs 

and corresponding observed probabilities at different 

thresholds from typhoon Fanapi, which was the most 

powerful typhoon to hit Taiwan in 2010 and caused a 

flash flood over areas of southern Taiwan. If the radar 

QPE is less than the selected threshold, the observed 

precipitation probability is zero; otherwise, it is one. In 

the case of typhoon Fanapi, the rainfall regions of the 

forecasts and observations have good correspondence. 

4.  Verification results 

Eight typhoon cases in 2008 and 2009 (Table 1) 

were used to evaluate the performance of 0-6h PQPFs. 

Since the LAPS EPS has severe wet bias, we adopted the 

linear regression (LR) method to calibrate the PQPFs. In 

addition, the cross validation was carried out by using the 

cases in 2008 as the training samples to calibrate the cases 

in 2009, and in turn the 2009 cases as the training samples.  

Some verification methods were used to evaluate the 

spread-skill relationship, forecast bias and discriminating 

ability. Regarding the experiments in this study, please 

refer to Table 2 for a detailed description. 

a. Spread-skill relationship  

A critical measure of the quality of ensemble 

forecasts is the spread-skill relationship. That is, whether 

the small-spread ensemble forecasts have smaller forecast 

errors (i.e., higher skill) than the large-spread ones. In this 

study, the ensemble spread (SPRD) was used as the 

spread measure, and the root mean square error (RMSE) 

of the ensemble mean was used as the skill measure. The 

scatter plot from eight typhoon cases (Fig. 4) shows that 

the SPRD and RMSE are highly correlated with a 

correlation of 0.96, which indicates a good spread-skill 

relationship. That is, the ensemble spread can well 

represent the forecast uncertainties.   

b. Forecast performance  
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Usually, relative operating characteristic (ROC) is 

used together with reliability diagram to evaluate the 

forecast performance since ROC is conditioned on the 

observations and reliability diagram is conditioned on the 

forecasts. ROC answers the question: given that an event 

occurs, what is the corresponding forecast? While 

reliability diagram answers the question: given that an 

event is predicted, what is the outcome? Reliability 

diagram is related to conditional bias, but ROC is not 

sensitive to bias. A biased forecast may still have a good 

ROC, which means that it can be improved through a 

calibration procedure. Therefore, ROC can be taken as a 

measure of potential usefulness.  

1) Discriminating ability 

The relative operating characteristic (ROC；Wilks 

2006) curve plots the hit rates vs. the false alarm rates 

using a set of probabilities thresholds (i.e., rainfall event 

is regarded as occurring when the forecast probability 

exceed this threshold). The area under the ROC curve (i.e. 

ROC area) measures the ability of the forecast to 

discriminate between events and non-events. If the ROC 

curve lies above the diagonal, the ROC area is greater than 

0.5, which indicates skillful discriminating ability. The 

ROC curves (Fig. 5a) and the ROC areas (> 0.825, Fig. 

5b) from the experiment SMP-T indicate good 

discriminating ability. It also implies that the biased 

PQPFs from LAPS EPS can be greatly improved through 

a calibration procedure.  

2) Forecast bias 

The reliability diagram can be used to determine 

how well the forecast probabilities correspond to their 

observed frequencies. If the reliability curve is closer to 

the diagonal, the forecast bias is smaller and the reliability 

is higher. If the curve lies below the diagonal, it indicates 

over-forecasting. Points above the diagonal indicate 

under-forecasting. Except for the slightly dry bias in 

lower forecast probabilities at smaller thresholds (below 

5mm/6h) from the experiment SMP-T (Fig. 6a), all 

reliability curves indicate wet biases (i.e., the reliability 

curve lies below the diagonal), and the bias grows with 

increasing threshold. The wet biases were corrected after 

calibration (left column in Fig. 6).  

The corresponding histogram (right column in Fig. 

6) shows the sample ratio in each forecast probability bin. 

In general, the dry and wet biases were corrected by 

adjusting the lowest and highest probabilities to the mid-

range ones via the calibration procedure. 

5.  Sensitivity experiments on calibration 

In this section, two sets of sensitivity experiments 

(Table 2) were carried out, including (1) the experiments 

on different training samples, and (2) the experiments on 

the inconsistency of observation accuracy. The 

inconsistency is from the fact that the radar QPEs used as 

the observations were calibrated with gauges in the land 

area, but were not calibrated in the sea areas.  

a. Experiments on different training samples 

This sensitivity experiment consists of the reference 

(SMP-T) and its two calibration experiments, SMP-T(LR) 

and SMP-T8S(LR). The difference between the two 

calibration experiments lies in adopting different training 

samples during the calibration process. All samples in the 

experiment SMP-T(LR) were divided into two groups 

when carrying out the cross validation. They are typhoon 

cases in 2008 and 2009 respectively, where one group was 

used as the training samples to calibrate the other one. 

However, the experiment SMP-T8S(LR) puts all samples 

into eight groups, which are eight typhoon cases 

respectively. Seven groups were used as the training 

samples to calibrate the remaining one. In other words, 

each typhoon case serves as the validation samples in turn. 

Though the SMP-T8S(LR) adopted far more training 

samples, the calibration results of the SMP-T(LR) is 

better at the large thresholds.   

Figure 7 indicates that eight typhoon cases do not 

show a very similar characteristic in PQPFs in terms of 

reliability at the threshold of 30mm/6h. Therefore, 

adopting more training samples [SMP-T8S(LR)] does not 

guarantee better calibration results. This sensitivity 

experiment shows that calibration results are sensitive to 

the training samples. Therefore, calibration should be 

performed based on consistent forecast biases between 

training and validation samples.  

b. Experiments on the inconsistency of observation 

accuracy  

This sensitivity experiment consists of two sets of 

experiments. The difference between the two sets lies in 

that their samples were adopted from different radar 

coverage. The samples of the experiments SMP-T and 

SMP-T(LR) were adopted from all radar coverage 

(including the sea and land areas), while those of the 

experiments SMP-L and SMP-L(LR) were only from the 
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land areas in Taiwan. The land samples are only about 

9.4% of all samples.  

The reliability diagrams of SMP-L and SMP-L(LR) 

only show slightly mixed biases at each threshold. 

Comparing the reliability diagrams of the experiment 

SMP-T with SMP-L indicates that the severe wet biases 

in SMP-T result mainly from the ocean samples, which 

most likely results from the underestimation of the radar 

QPEs in the sea areas.  

Figure 8 shows the spatial distribution of rank 

probability skill score (RPSS) from the experiments 

SMP-T and SMP-T(LR). The RPSS measures the relative 

improvement of the probabilistic forecast over 

climatology for a multi-category probabilistic forecast. 

The positive RPSS indicates a skillful forecast, with the 

perfect value of 1. After calibration, the RPSS values in 

most sea areas have increased, while those in a few land 

areas have decreased. That is, the calibration results are 

dominated by the ocean samples.  

This is because the observation accuracy is 

inconsistent in the sea and land areas, and samples are 

dominated by the ocean ones. Therefore, individual 

calibration for the sea and land areas is needed to ensure 

better calibration results.  

6. Summary 

The LAPS EPS has a good spread-skill relationship 

and skillful discrimination ability. Therefore, the biased 

PQPFs can be greatly improved through a calibration 

procedure. The sensitivity experiments on calibration 

show that, first, calibration should be performed based on 

consistent forecast biases between training and validation 

samples. Second, we should consider the inconsistency of 

observation accuracy performing the calibration. 
In the future, with more collected typhoon cases, the 

distributions of precipitation forecast biases can be 

analyzed for different typhoon paths, moving speeds or 

precipitation intensities. Then various LR relationships 

can be established and applied to different distributions of 

forecast biases in the typhoon cases, thus to produce better 

calibration results. 
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TABLE 1. Typhoon cases in 2008 and 2009. 

 Event : number of 

validation time 
Start  －  end 

 

 

 

2008 

 

Kalmaegi : 11 ( TY1 ) 16 Jul, 09UTC  －  18 Jul, 15UTC 

Fung‐wong : 24 ( TY2 ) 26 Jul, 03UTC  －  29 Jul, 12UTC 

Sinlaku : 27 ( TY3 ) 11 Sep, 00UTC  －15 Sep, 12UTC 

Hagupit : 11 ( TY4 ) 22 Sep, 00UTC  －  23 Sep, 06UTC 

Jangmi : 17 ( TY5 ) 27 Sep, 18UTC  －  29 Sep, 18UTC 

 total : 5 typhoons    90 6‐h 

 

2009 

 

Linfa : 12 ( TY6 ) 20 Jun, 06UTC  －  22 Jun, 03UTC 

Molave : 7 ( TY7 ) 17 Jul, 00UTC  －  17 Jul, 18UTC 

Morakot : 39 ( TY8 ) 05 Aug, 18UTC  －  10 Aug, 2UTC 

 total : 3 typhoons    58 6‐h 

 

 

TABLE 2. Summary of the difference of statistical samples in the 
sensitivity experiments. 

Expt Description 

SMP-T 

Statistical samples were adopted from all radar 
coverage area within the QPESUMS domain 
(including sea and land areas), before LR calibration. 
This experiment was used as a reference one in this 
study.  

 

SMP-T(LR) 

 

Statistical samples were the same as in the 
experiment SMP-T, but after LR calibration. The 
statistical samples were divided into two groups 
(cases in 2008 and 2009 respectively) when 
performing the cross-validation procedure. 

 

SMP-T8S(LR)

 

The same as in the experiment SMP-T(LR), but the 
statistical samples were divided into eight groups 
(eight different typhoon cases in 2008 and 2009) 
when performing the cross-validation procedure.  

SMP-L 

The same as in the experiment SMP-T, but the 
statistical samples were only adopted from the land 
area within the QPESUMS domain. 

SMP-L(LR) 

The same as in the experiment SMP-T(LR), but the 
statistical samples were only adopted from the land 
area within the QPESUMS domain. 
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FIG. 1. Schematic diagram of short-range forecast system LAPS. 

 

FIG. 2. Schematic diagram of time-lagged multimodel ensemble. 

 

FIG. 3. Distribution of LAPS 0-6 h PQPFs (left column) 
and QPESUMS precipitation (used as truth) probabilities 
(right column) at thresholds (a) 50, (b) 100, and (c) 200 
mm/6 h ending at 1200UTC 19 Sep 2010. In the right 
column, orange shaded area denotes pixels where 
QPESUMS precipitation estimations exceed the indicated 
threshold, and pink shaded area indicates QPESUMS 
radar coverage. 

 

 

 

FIG. 4. Scatter plots of the RMSE against the ensemble 
spread (SPRD) from the experiment SMP-T. Each point 
in the scatter plot comes from one 0-6 h QPF (i.e. RMSE 
and SPRD are averaged over the QPESUMS domain). 
The linear regression line, correlation coefficient (C), and 
the coefficient of determination (Rଶ) are shown on the 
plot. 

 

 

 

FIG. 5. (a) ROC curves from the experiment SMP-T and 
(b) the area under the ROC from the experiments SMP-T 
(line with circles) and SMP-L (line with squares) for 
LAPS 0-6 h PQPFs at different thresholds (1, 5, 10, 15, 
20, and 30 mm/6 h). 
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FIG. 6. Reliability diagrams (left) for LAPS 0-6 h PQPFs 
at thresholds (a) 1, (b) 5, and (c) 20 mm/6 h. Reliability 
curves from the experiments SMP-T (before LR 
calibration, dashed line with solid dots) and SMP-T(LR) 
(after LR calibration, solid line with hollow circles) are 
shown. The horizontal dashed line indicates the sample 
climatology frequency. Histograms (right) indicate the 
corresponding sample ratio (%) of each forecast 
probability subrange for the experiments SMP-T (before 
LR, gray) and SMP-T(LR) (after LR, blank). 

 

 

 

FIG. 7. Reliability diagram for LAPS 0-6 h PQPFs at the 
threshold of 30 mm/6h. Reliability curves from eight 
typhoon cases (TY 1 to TY 8) in 2008 and 2009 are shown. 
 

 

 

FIG. 8 The spatial distribution of the ranked probabilistic 
skill score for LAPS 0-6 h PQPFs from the experiments 
(a) SMP-T (before LR calibration) and (b) SMP-T (LR) 
(after LR calibration) using four thresholds (1, 5, 10 and 
20 mm/6 h) to define five categories. 

 

 

 

            

 

 

 

 

 

 

 


