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Abstract 
 
     Deep atmospheric dynamic system is introduced and implemented into NCEP-GFS (National Centers 
for Environmental Prediction-Global Forecast System). The deep atmospheric system has no 
approximation and covers nonhydrostatic system with three dimensional momentum equations, three-
dimensional Coriolis force, vertical varied gravitational force, and height varied momentum.	
  A form of 
the discretized equation set to use the existed hydrostatic GFS routines without altering too much is 
illustrated. 

Key word: deep atmosphere, nonhydrostatic system, global spectral model 
 

 
1. Introduction 
 
 The trend of recent global modeling development is 
to move from hydrostatic system to nonhydrostatic 
system, however, in EMC (Environmental Modeling 
Center), for operational purposes and supporting all 
centers’ missions in NCEP (National Centers for 
Environmental Prediction), we are not only having 
nonhydrostatic system for all centers’ weather and 
climate forecasting but also working to have capability to 
support SWPC (Space Weather Prediction Center). Thus, 
we are not only in the stage to prepare nonhydrostatic 
cloud-resolvable for high-resolution weather/climate 
forecast but also in the requirement to have deep-
atmospheric capabilities in order to couple with space 
weather model in NCEP GFS (Global Forecast System). 
However, deep-atmospheric dynamic modeling is not 
new, about a decade ago, UK Meteo Office is planning 
to do it as Staniforth and Wood (2003) and Wood and 
Staniforth (2003). Since deep atmospheric dynamic 
includes nonhydrostatic system, deep atmospheric 
dynamic system is our modeling goal. 
 For deep-atmospheric dynamics, the Euler equation 
set has capability to cover all scales of atmospheric 
motion. Based on conservative principles; such as 
angular momentum principle, energy conservation, mass 
conservation and entropy conservation, the deep 
atmospheric Euler equation set has no approximation and 
covers nonhydrostatic system with three dimensional 
momentum equations, three-dimensional Coriolis force, 
vertical varied gravitational force, and height varied 
momentum. For precise/correct deep atmospheric 
circulation to couple with space weather and prolong its 
predictability, this set of equation has been discretized 
into differencing equation set to be used for numerical 
modeling, which can be found in Juang (2014).  An 
alternative form of this discretized equation set to use 
existed GFS routines without altering too much is 
presented in this extended abstract. The ready-to-code 

discretized equation has been coded into NCEP GFS 
including spectral transform, spectral derivative, semi-
Lagrangian and semi-implicit with two-time-level 
scheme. It is under testing and debugging, we hope to 
present its preliminary results in the meeting.  
 
 
2. Deep atmospheric equation set 
 
     The deep atmospheric dynamic system has no 
approximation in Euler equation set, which can be 
derived into generalized vertical coordinates and written 
as 
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There are three momentum equations with three-
dimensional Coriolis force terms, the mass conservation 
equation with vertical height included. The enthalpy 
equation as shown in Juang (2011) is used here as well. 
Note that, momentums, coordinated transformed density, 
and gravitational force are function of height. 
 
 
3. Mass coordinate system 
 
     In order to consider terrain, the traditional mass 
coordinates are considered. Instead of using the 
definition in nonhydrostatic mesoscale spectral model 
(Juang 2000) to have hydrostatic coordinate (Juang 
1992), we start to use mass coordinates. The mass of any 
given surface by integral of the mass above, we can have 
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To utilize the mass convergence equation and this mass 
definition, we introduce a coordinate pressure as 
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Let coordinate pressure be zero at top of model, then any 
given surface, coordinate pressure can be written as 
coordinate pressure gradient integral 
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From above two equations and coordinate density of 
(2.12), we can get coordinate hydrostatic relation in 
following form as 
∂!p
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which is similar form as hydrostatic system. Furthermore, 
the coordinate hydrostatic relation gives us the relation 
between generalized coordinate and height as 
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Details can be found in Juang (2014). 

 
 
4. Modeling equation set 
 
     We modify the mass-coordinated deep atmospheric 
equation in the previous section into an alternated form 
to take advantage of the existed hydrostatic GFS to 
reduce recoding similar routines, especially the spectral 

transform routines. First, we let ε =
r
a

and wind as 

following  
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In this way, horizontal wind is modified to use shallow 
definition, and the height-weighted vertical wind can be 
used to simplify vertical gradient, see Juang (2014), so 
the modeling equation to use existed spectral transform 
can be written as 
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And other equations are no changed, which are (2.5), 
(2.6) and (2.7), and where 
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Φ = gr (4.12)  
We can find there are shallow atmospheric derivatives 
for all derivatives with modification of u to be shallow 
atmospheric definition and deep atmospheric parameter 
ε , otherwise there is no r, and horizontal winds are in 
shallow atmospheric definition. We can use existed 
spectral transform routines, especially between 
horizontal wind, divergence, and vorticity as usual. 
Nevertheless, the entire equation is still a deep 
atmospheric dynamic system. 
 
 
5. Initial condition preparation 
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     Since it may take a long time to develop future data 
assimilation system by using deep atmospheric dynamics, 
we will use current hydrostatic dynamics as initial 
condition to the deep-atmospheric system. However, 
several steps are required for further considerations. First, 
we use the same definition of coordinates constants to 
define vertical coordinate by coordinate pressure, 
because coordinate pressure is hydrostatic relation to 
height as monotone, thus we have 
!p = A+B!ps (5.1)  

where A and B as the same as hydrostatic system used in 
Juang (2011). We use the definition of coordinate 
pressure to compute the location of hydrostatic initial 
condition, then interpolate into the new definition by A 
and B for deep-atmospheric system as initial condition. 
 Another concern is related to hydrostatic relation in 
deep-atmospheric system. Since g is function of r, the 
hydrostatic balance in deep-atmospheric dynamic should 
be written as 
∂p
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2

r2
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where g is not constant but function of r as shown. Thus, 
from the vertical momentum equation and hydrostatic 
balance, we should have following relation 
Δ!p
Δp

= ε 4 (5.3)  

So, when we define coordinate pressure and the location 
in term of r, we can get hydrostatic balanced pressure by 
the relation above (5.3) and coordinate pressure 
definition in section 3 equation (3.6) by iteration for 
entire atmosphere in vertical direction at any given 
location for initial condition as hydrostatic balance for 
deep atmospheric dynamics. 
 
 
6. Conclusion 
 
 Implement deep-atmospheric system into operational 
forecasting system should not have any practical 
problem, because UK Meteo Office had done it even 
about a decade ago (Davies et al 2005). In NCEP, we are 
somewhat slower than other centers on advancing 
development of global model dynamics. Instead of 
moving a reasonable step from hydrostatic system to 
nonhydrostatic system as most of centers are doing, we 

follow UK Meteo Office to advance further step to 
request an implementation to reach non-approximation 
Euler equation set for global forecasting system, not only 
to avoid future dynamical change but also to support 
SWPC in NCEP.  
     This extended abstract has illustrated what we will 
use on implementation of deep-atmospheric Euler 
equation set for global forecasting system, which 
including full dimensional Coriolis force and full 
dimension of momentum equation as nonhydrostatic 
system. We hope it could support dynamic system for a 
long period of time because it covers all scales and 
whole atmosphere for coupling other components of 
Earth modeling system. 
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