利用衛星資料推估氣象站雲量觀測之可行性分析

齊祿祥 謝瑩薫 氣象衛星中心 中央氣象局

摘要

地面各種氣象要素觀測,為分析與偵測天氣系統演化的重要參考依據,目前國際間,為提 升氣象觀測系統的準確性與氣象站網密度,逐步發展建置各式之自動化觀測設備與無人氣象站 的設置。現行地面氣象站之雲、能見度與天氣狀況觀測,仍維持傳統人工目視之定性觀測為主, 因此發展氣象要素之自動化定量觀測技術,將可滿足未來現代化氣象觀測需求。

本研究主要利用2013年日本MTSAT地球同步氣象衛星之數據資料,採用衛星各頻道亮溫偏差的分裂視窗技術,推估本局27個人工氣象站觀測之總雲量。研究發現衛星觀測推估總雲量與本局所屬氣象站之雲量觀測,平均相關係數達到0.68,顯示利用衛星資料推估氣象站之觀測雲量,可得到極佳的估計結果。因此,利用衛星資料,將可得到更為定量與客觀的雲量觀測數據,避免人為觀測視覺的差異性,此研究結果將可提供未來自動化氣象觀測的參考。

關鍵字:雲量觀測、分裂視窗。

一、前言

1990年代以後,衛星多波段、窄頻帶(Narrow Band)遙測技術的建立,利用衛星資料研究大氣、海洋及地表環境之各種特徵變化與分布的研究,已取得重大的進展。1999年12月Terra與2002年5月Aqua所發射的EOS地球環境系統觀測衛星上所搭載的MODIS 感應器,更具有36個可見光至紅外線波段。因此衛星的多頻道資料已逐漸為科學家廣泛使用,調查各種不同性質的表面特徵。

Yamanouchi & Kawaguchi (1992)、Reudenbach & Bendix (1998)與Bendix (2002)就曾使用美國 NOAA 繞極軌道衛星的不同紅外線頻道資料研究 低雲與霧區,此種紅外線頻道亮溫偏差檢測技術, 亦成功的被應用於美國 GOES-8、.歐盟 Meteosat SEVIRI 與日本 MTSAT 地球同步衛星,偵測夜間 霧區與低雲的存在區域。(Lee,1997;Cermak,2007; Cermak,2008; Li et al, 2012)

利用可見光與紅外線等多頻道輻射感應器, 接收來自不同表面的輻射差異,可衍生各種濾雲或 雲遮(Cloud Mask)等產品。(Ackerman et al, 2006)

目前國際間,包括美、日、中等國,為增進氣

象觀測系統的準確性與氣象站網密度並提升成本 效益,逐步發展建置各式之自動化觀測設備與無人 氣象站的設置。

美國國家氣象局(National Weather Service)在 西元 2000 年前就已規劃國家氣象觀測儀器現代化 重建計畫(Modernization and Associated Restructuring),其中地面自動觀測系統(Automated Surface Observing System; ASOS)可提供每5分鐘 的即時觀測數據。(Koch and Saleeby, 2001)

現行地面氣象站之雲、能見度與天氣狀況觀 測,仍維持傳統人工目視之定性觀測為主,因此發 展氣象要素之自動化定量觀測技術,將可滿足未來 現代化氣象觀測需求。

雲量觀測的自動化技術,除可利用地面架設 之光學魚眼鏡頭偵測。(高野,2007;Long&Tooman, 2001)亦可應用具有高時間觀測密度的地球同步衛 星多頻道觀測資料之分裂視窗(Splitwindow)分析 技術,得到氣象站之自動雲量觀測資料。

二、資料資料來源與研究方法

本研究採用齊(2008)利用日本 MTSAT 衛星 紅外線數據資料之紅外線第1、2 頻道與第1、4 頻 道亮度溫度偏差門檻值演算法,計算 2013 年 1~12 月全年本局包括三、四等之 27 個人工氣象站(圖 1),水平仰角約Θ=15 度,半徑(R)約為 25 公 里,垂直方向錐狀視野範圍內,衛星所得到雲區像 素點數之百分比,推估計算氣象站總雲量。

同時,為瞭解衛星推估雲量與氣象站雲量觀 測之差異情形,統計並校驗上述氣象站之日間 (0800~1700 LST)與夜間(2000~0500 LST)每3 小時與逐時加強觀測之雲量資料,其中東吉島氣象 站,因無夜間觀測,故缺乏該站之夜間校驗資料。 為便於校驗,當氣象站觀測天空狀況不明時,該時 段之雲量觀測資料,不列入統計;另外,觀測總雲 量與衛星推估雲量,都轉換為10分量計,相關係 數統計則採用皮爾森相關係數分析法(Pearson correlation coefficient)。

三、衛星推估氣象站總雲量產品

利用紅外線紅外線第1頻道(11.5μm)、第2 頻道(12.5μm)與第4頻道(3.9μm)之日、夜間 不同亮度溫度偏差門檻值演算法,計算氣象站上空 錐狀視野範圍內,衛星所得到雲區像素點數之百分 比。再經格式轉換為氣象電碼格式之顯示符號,可 自動填繪於各氣象站站址(圖2),目前此作業產品 已導入本局即時預報系統(Weather Integration and Nowcasting System; WINS)中,自動顯示並持續 測試中。

四、衛星推估與氣象站觀測雲量相關 特徵

圖 3 為 103 年 1~12 月衛星推估與臺灣地區 27 個包括三、四等平地與高山氣象站人工觀測總雲量 相關係數之逐月時間序列分布情形。紅色實線為各 月的白天 0800~1700 LST (地方時),藍色實線表 示各月夜間 2000~0500 LST (地方時)平均相關係 數。

圖中顯示,各月衛星推估與氣象站之觀測總 雲量之相關係數,平均日間相關係數較夜間為高, 且大部分氣象站之相關係數,不論日夜變化,都達 到 r>0.5。下列將詳述日、夜間雲量推估與氣象站 實際觀測總雲量間,兩者差異與特徵。

(一) 日間分布特徵

由本局 16 個平地氣象站之雲量觀測資料顯示, 日間與衛星推估各月雲量之相關係數大都超過 0.5, 3 月相關係數甚至可達到 0.8,另一峰值出現於 11~12 月,5~6 月則衛星推估與氣象站實際觀測雲 量之相關性較差。東部與東南部的宜蘭、臺東與成功的平地氣象站 11~2 月相關係數出現全年最低值, r≤0.5,此與西半部平地氣象站不同。

鞍部、竹子湖、阿里山、玉山與日月潭等山區 氣象站各月日間之相關係數大都超過 0.5,相關係 數最高出現於冬季的 11~1 月。鞍部、竹子湖氣象 站,在 10 月都出現 r<0.5 的低相關係情形;玉山 氣象站屬於高海拔氣象觀測站,在4、10 與 12 月 的雲量觀測與衛星估計之相關係數約為 r≦0.5。此 外,衛星所推估阿里山與日月潭兩氣象站之各月雲 量,平均都可達到 r>0.8 的顯著相關結果。

外島氣象站,各月衛星估計與觀測雲量相關 性最高值則出現於3、8與12月,彭佳嶼、金門、 馬祖、澎湖與東吉島等外島地區氣象站之日間各月 實際觀測雲量與衛星推估相關係數平均達到0.8的 顯著結果;但蘭嶼5月、11~1月觀測與衛星推估 之相關係數,僅達0.5的相關程度。

(二) 夜間觀測特徵

夜間觀測雲量受到天候與人為因素影響,因此,由月平均時間序列之相關係數顯示,夜間雲量 估計之相關性略低於日間觀測的結果。

夜間,包括臺北、基隆、宜蘭、臺中、花蓮等 16 個平地氣象站的相關係數之月時間序列顯示, 衛星估計與氣象站觀測雲量的相關性低於日間,平 均而言,3月、4月與8月都呈現較高相關結果, 夜間 10~2 月為衛星雲量估計結果與氣象站觀測雲 量之相關性較低,約為0.5;但嘉義、台南、高雄、 恆春與成功等氣象站部分月份之相關係數則僅約 0.35~0.4。成功與臺東氣象站在4~5月亦出現該年 度夜間觀測雲量與衛星估計之較低相關。

位於山區的竹子湖氣象站在夜間全年之觀測 雲量,相關係數都超過0.5。日月潭氣象站僅在11 月相關係數未達0.5,其餘各月之相關係數均達0.5 以上。鞍部、竹子湖與日月潭氣象站在1月出現較 高相關結果,其他山區氣象站則分布於6~8月。鞍 部、阿里山、玉山山區氣象站在9~12月與2月大 都出現雲量觀測與衛星估計r≦0.5的低度相關,特 別是玉山氣象站,可能位屬高海拔地區,因此全年 之夜間觀測雲量與衛星估計比較,僅在6、7月相 關係數超過0.5。

外島地區的澎湖與彭佳嶼氣象站的夜間觀測 與衛星估計雲量,都有不錯的統計結果,全年各月 的相關係數超過 0.5。外島各氣象站,平均以冬季 的 12、1 月雲量觀測與衛星估計的相關性最高。金 門、馬祖與蘭嶼氣象站都出現在 5 月之夜間雲量觀 測的最低相觀結果,r<0.5。

(三) 全年平均之雲量統計特徵

表1為2013年全年衛星推估與氣象站觀測雲 量的日間與夜間之平均相關統計情形,日間衛星推 估與氣象站觀測總雲量之平均相關係數可達到 0.75顯著相關結果,夜間的平均相關係數較低,約 為0.62左右,不論日夜變化情形,平均相關係數約 為0.68。

日間衛星估計雲量與平地氣象站之相關係數 大都超過 0.7,夜間則相關性較差。中部以南的臺 中、嘉義、臺南與高雄等氣象站之日夜相關係數變 化差異較大,夜間相關係數約為 0.6;特別是臺南 氣象站,夜間觀測相關係數則降為 r=0.5。

外島的彭佳嶼、金門、馬祖、澎湖、東吉島日 間都存在明顯的高度相關,相關係數 r>0.8;夜間, 衛星估計雲量與外島氣象站之相關係數約為 0.7; 惟獨蘭嶼氣象站之日間與夜間相關係數差異不大, 約為 0.5~0.6。

白天衛星估計山區氣象站之雲量結果,屬阿 里山與日月潭氣象相關最高,約為0.83,其餘氣象 站之相關係數r>0.6,夜間則屬鞍部與玉山的相關 性最低。

平均而言,臺北、基隆、蘇澳、新竹、梧棲、 竹仔湖、阿里山、日月潭、彭佳嶼、金門、澎湖與 馬祖等 12 個氣象站,衛星估計與氣象站觀測雲量 之相關係數 r≧0.7。玉山氣象站則因屬觀測環境之 差異特性,因此,衛星估計雲量與觀測之平均相關 性不佳,約為 r=0.46。

(四)小結

由衛星推估與本局 27 個人工觀測氣象站之相 關係數的月時間序列分布顯示,整體而言,平均相 關係數約為 0.68。日間衛星所推估與氣象站觀測雲 量,普遍較夜間為高。

日間,不論平地、外島與山區氣象站觀測與衛 星估計雲量相關係數大部分都超過 0.7,彭佳嶼、 金門、馬祖、澎湖、東吉島、阿里山與日月潭氣象 站的相關性平均都超過 0.8。

3、11~12 月,日間平地氣象站的雲量觀測與 衛星推估值有較明顯的相關性高峰,5~6月的相關 係數則出現最低值。宜蘭、臺東與成功氣象站相關 係數 r≦0.5 出現於2月與11月。夜間,衛星估計 雲量在10~2月與氣象站觀測結果的相關係數僅為 ~0.5;中部以南與東南部平地氣象站,夜間觀測雲 量與衛星估計結果,部分月份僅達 r=0.35~0.4。

日間,所有山區氣象站觀測之雲量與衛星估計的相關係數大都超過0.5,冬季的11~1月,呈現最大相關程度。玉山氣象站4、10與12月的雲量

觀測與衛星估計,相關係數則為r≦0.5。夜間,竹 子湖與日月潭氣象站的雲量觀測與衛星估計之相 關係數大都超過 0.5;玉山氣象站,全年之夜間觀 測雲量與衛星估計,僅在 6、7 月相關係數超過 0.5, 其他月份 r<0.5。

日間,除蘭嶼氣象站外,其他島嶼氣象站,各 月實際觀測與衛星推估雲量之相關係數都可達到 0.8。夜間觀測,在金門、馬祖與蘭嶼氣象站5月的 雲量觀測r<0.5。

平均而言,中部以南的臺中、嘉義、臺南與高 雄等氣象站之日夜相關係數,變化差異較大;山區 則在日月潭、阿里山、玉山氣象站有較大的日夜觀 測差異情形出現。

五、綜合討論

利用地球同步衛星各頻道之亮度溫度偏差門 檻值演算技術,推估氣象站觀測總雲量,經過統計 分析結果發現,整體而言,平均相關係數為 0.68, 並且日間衛星所推估與氣象站觀測雲量,相關係數 可達到 r=0.75。

部分氣象站在梅雨季(5、6月)與冬季(10~2 月)觀測雲量與衛星推估之雲量相關性較低,主要 可能因為梅雨季天氣系統較為活躍,夜間部分高層 雲系,不易觀測所致;另外,在冬季時,天氣系統 發展較不明顯,局部地區在此季節經常有霧發生, 受到衛星資料之解析度與演算技術限制,而無法正 確偵測。

玉山氣象站地屬高海拔氣象觀測站,由於其 環境的特殊性,因此,衛星推估雲量與氣象站觀測 結果,在日、夜與季節變化的差異極為明顯。日間 觀測雲量與衛星推估結果,大都維持r>0.5;但在 夜間僅有6、7月的相關性超過0.5,其他月份都低 於此數值,特別是9~3月的夜間,相關係數約r< 0.35。主要原因,為秋、冬季節,天氣系統相對穩 定,且發展高度較低,受到人夜後,空氣沉降影響, 雲頂低於氣象站的高度,目前衛星雲量估計技術, 並未考慮到雲頂與雲底發展高度等因素,致使兩者 在夜間的相關性不佳。

部分氣象站雲量觀測與衛星推估的相關結果, 在日間與夜間有較大的差異性,可能來自於觀測員 在夜間觀測時,由於光線強弱變化的影響,造成視 覺上之反應限制。同時,也使得人工氣象站在夜間 觀測時,經常出現觀測雲量為天空狀況不明的結果。

研究同時發現,衛星地理經緯度定位的精確 程度,亦會影響衛星雲量估計的結果。雖然目前日 本 MTSAT 地球同步氣象衛星,具有新一代三軸姿 態穩定系統,其地理定位精度較高,但在太空中受 各種因素影響,仍會致使某些時間觀測產品的定位 偏移。此外,日本 MTSAT2 地球同步衛星觀測時 間間隔為 30 分鐘,衛星掃描經過臺灣的時間與氣 象站觀測時間約有 10~30 分鐘的落差,亦為兩者相 關性的誤差來源。

目前地球同步衛星資料,受觀測頻道與解析 度等因素限制,無法完全精確的偵測地表各種屬性 的特性,但隨之日本 Himawari 8/9 新一代地球同步 衛星於 2014 年底即將升作業,屆時,將可提供較 目前更多的觀測頻道與高時、空解析資料,可進一 步提升衛星各種衍生產品的精確度與相關應用。

六、結論與未來工作

本研究統計 2013 年 1~12 月衛星推估氣象站 總雲量與氣象站觀測總雲量之結果顯示,應用衛星 資料推估氣象站觀測雲量,日間相關性高於夜間; 不論日、夜變化因素,平均相關係數可達到 0.68。

衛星雲量估計技術,未考慮雲頂/雲底發展高 度等因素,致使部分氣象站在梅雨季與冬季夜間的 相關性偏低。由於夜間光線對視覺的限制,氣象站 觀測與衛星推估雲量之相關性與日間觀測,存在明 顯的差異。

雖然,衛星觀測可能受到地理定位、觀測時間、 觀測儀器限制等因素影響,使得衛星估計與氣象站 觀測雲量兩者之間,存在結果差異。但衛星觀測資 料,相對較不易受到日、夜變化與人為視覺差異影 響,可到更為客觀的雲量觀測數據優點。

目前國際間,為提升氣象觀測系統的準確性 與氣象站網密度,逐步發展建置各式之自動化觀測 設備與無人氣象站的設置。因此,利用衛星遙測資 料,發展各種氣象要素的自動化定量觀測技術,將 可滿足未來現代化氣象觀測需求。

七、參考文獻

- 高野松美,2007:雲監視装置による全雲量算出方 法とその結果。高層氣象臺彙報,67,67-74。
- 齊祿祥,2008:利用衛星多頻道資料估計氣象站之 觀測總雲量研究,97年度中央氣象局研究發 展專題,CWB97-1A-08,p43。
- Ackerman, S. et al. > 2006 : Discriminating Clear-sky FromCloud With Modis Algoritm Theoretical Basis Document(MOD35), pp.1-14.
- Bendix, J. (2002) : A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. *Atmos. Res.*,64, 3-18.
- Cermak, J. and J. Bendix. ' 2007 : Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI

data - a feasibility study. *Pure Appl. Geophys*, Vol. 164, p.p. 1179–1192.

- Cermak, J. and J. Bendix. 2008 : A novel approach to fog/low stratus detection using Meteosat 8 Data. *Atmospheric Research*. Vol 87, p.p. 279–292.
- Lee, T. F., Turk, F. J. and K. Richardson. 1997 : Stratus and Fog Products Using GOES-8–9 3.9µm Data. *Weather and Forecasting*, Vol.12, 3, 664–677.
- Li, J. H., Z. G. Chen, H. B. Zhao, Z. Liang, and H. Y. Wu. 2012: Fog Detection over China's Adjacent Sea Area by using the MTSAT Geostationary Satellite Data, *Atmospheric and Oceanic Science Letters*, 5(2), 128-133.
- Long, C.N., D.W. Slater, and T. Tooman. 2001 : Total skyimager model 880 status and testing result. *ARM TechnicalReport*, ARM TR- 006, 36pp.
- Koch, S. E. and S. Saleeby. '2001 : An Automated System for the Analysis of Gravity Waves and Other Mesoscale Phenomena. Weather and Forecasting 16:6, 661-679.
- Reudenbach, C., and J. Bendix, (1998): Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data. *Meteor.* Appl., 5, 205-216.
- Yamanouchi, T., and S. Kawaguchi. (1992) : Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. *Int. J. Remote Sens.*, 13, 111-127.

圖1本局包括三、四等之27個人工氣象站址位置。

(a)WINS 填繪之衛星推估總雲量。

(b)WINS 填繪氣象站 Metar 資料。

(c)可見光影像。 圖 2 2014 年 8 月 6 日 0300 UTC 日本 MTSAT 衛星可見光影像與雲量估計產品。

圖 3 2013 年各月衛星推估與氣象站日間(紅色實線)與夜間(藍色實線)雲量相關係數時間序列。

2013 年各氣象站觀測雲量與衛星推估雲量之相關係數(r)			
氣象站	日間	夜間	平均相關係數
板橋	0.705	0.667	0.670
鞍部	0.656	0.480	0.573
台北	0.746	0.678	0.709
竹子湖	0.744	0.652	0.696
基隆	0.729	0.678	0.709
彭佳嶼	0.846	0.814	0.830
花蓮	0.708	0.695	0.660
蘇澳	0.789	0.765	0.762
宜蘭	0.661	0.694	0.657
金門	0.848	0.754	0.810
東吉島	0.801	X	
澎湖	0.813	0.690	0.748
台南	0.779	0.499	0.641
高雄	0.774	0.513	0.635
嘉義	0.735	0.512	0.640
台中	0.724	0.544	0.609
阿里山	0.829	0.525	0.709
大武	0.642	0.596	0.569
玉山	0.613	0.217	0.463
新竹	0.798	0.688	0.735
恆春	0.715	0.558	0.670
成功	0.738	0.671	0.690
蘭嶼	0.606	0.525	0.555
日月潭	0.826	0.570	0.714
台東	0.706	0.654	0.655
梧棲	0.785	0.685	0.739
馬祖	0.877	0.725	0.820
平均	0.748	0.617	0.680

表12013年1~12月衛星推估與各氣象站觀測雲量之相關係數。

註:X:無觀測資料。