地形激發對流影響侵台颱風運動之位渦趨勢診斷分析

徐理寰 郭鴻基

國研院台灣颱風與洪水研究中心

國立台灣大學大氣科學系

COLLABORATOR

R. G. FOVELL

UCLA

102年天氣分析與預報研討會

MOTIVATION

- Slow moving typhoons with heavy rainfall often cause serious disaster to Taiwan.
- Land rainfall amount is roughly proportional to the inverse of TCs' translation speed over land. (Chien and Kuo 2011)

TC rainfall climatology over Taiwan

Rainfall phase locked with topography

Cheung et al. (2008)

62 typhoons, 371 rain gauges

Maximum in windward side and central mountain area

- Topography **phase locked convection** and **diabatic heating** may affect the translation speed and modified typhoon tracks.
- Slowdown of typhoon motion for northern landfall typhoons.

Influence of Latent heating to storm motion of Morakot (2009)

Difference in mean motion vectors between CTRL and 25% qv due to LH effect

OBSERVATION RESULTS

- ❖1960-2010 westward landfall typhoons (61) with continuous track
- Hourly typhoon position from Typhoon database of CWB
- Rainfall data from 21 CWB surface stations

Asymmetric distribution of typhoon translation speed overland

Speed criteria:

61 continuous track typhoons mean translation speed (6.2 m/s)± 1 std. (2.9 m/s)

- 77 % of slow moving storms making landfall on northern Taiwan (10/13).
- 60 % of fast cases making landfall on southern Taiwan (6/10).

Composite Rainfall

3-hourly mean translation

(a) speed variations

- All subgroups speed up before landfall
- Speed up after landfall
 - ✓ Discontinuous cases
 - ✓ Southern landfall cases
 - √ Fast cases
- Slow down after landfall
 - ✓ Northern landfall cases
 - ✓ Slow cases
 - ✓ Large rainfall cases

The large scale mean flow still important

NUMERICAL EXPERIMENTS

Modified WRF Ver. 3.1.1 experiment

(Fovell and Su, 2007; Fovell et al., 2009,2010; Cao et al., 2011)

Experiment design:

- ❖ 1500 km x 1500 km domain
- 5 km horizontal resolution,35 vertical levels
- Uniform 3 m/s easterly flow
- Lin et al. microphysics scheme
- Jordan's (1958) Caribbean hurricane season sounding with fixed SST=29°C
- Bogused Rankine Vortex
 Initial vortex Vm=50 m/s
 Rm=50 km
- Taiwan topography (land free) water-crafted mountain

PV tendency equation of baroclinic and diabatic TC motion

Symmetric

Wavenumber 1

Wavenumber 2

Obtained by the least squares method

Symmetric PV advected by WN1 PV tendency

$$\left(\frac{\partial P}{\partial t}\right)_{1} = -C_{x} \frac{\partial P_{s}}{\partial x} - C_{y} \frac{\partial P_{s}}{\partial y}$$

Wavenumber 1

$$DH = \frac{1}{\rho} \left[(\zeta + f) \frac{\partial Q}{\partial z} + (\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}) \frac{\partial Q}{\partial y} + (\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}) \frac{\partial Q}{\partial x} \right]$$

- ***** DH ($\propto \partial Q/\partial z$) is not necessarily positive where Q is positive, because we consider the WN1 component.
- The level or vertical averaging depth makes a big difference.

T3N FAR OFFSHORE

Q is quite symmetric, therefore DH is small. Similar with OC

T3N APPROACH TO LANDFALL

Note DH points away from Q and subsidence in SW quadrant

T3N AFTER MOUNTAIN CROSSING

Very slow progress along W coast when DH strongly *opposes* motion; Storm weakened but also expanded significantly

Vertical cross-section of *Q* and vertical velocity

Fast Northern landfall Experiment (-5 m/s)

C= 4.0 m/s DH=1.4 m/s

NORTHERN VS. SOUTHERN LANDFALL

Summary

- Rainfall is phase-locked with topography in Taiwan. Slow storms with very large rainfall.
- * 77% (60%) of slow (fast) typhoons making landfall at northern (southern) Taiwan. The slow (fast) cases often with a slower (faster) pre-landfall speed and decelerate (accelerate) further during the landfall period.
- ❖ A positive feedback of rainfall and typhoon overland translation speed.
- Topography induced asymmetric diabatic forcing influences TC motion significantly when the mean flow is weak.
 - ♦ Slow down northwestward TC motion after mountain crossing
 - ♦ Speed up and turns the TC to south when approach to landfall

REFERENCE

Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. *J. Atmos. Sci.*, **70**,1006-1022.

~END~ THANKS FOR YOUR ATTENTION!