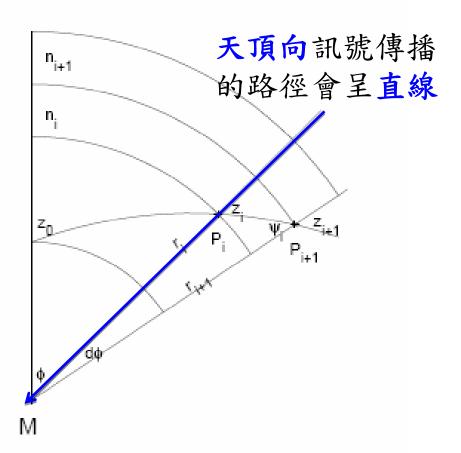
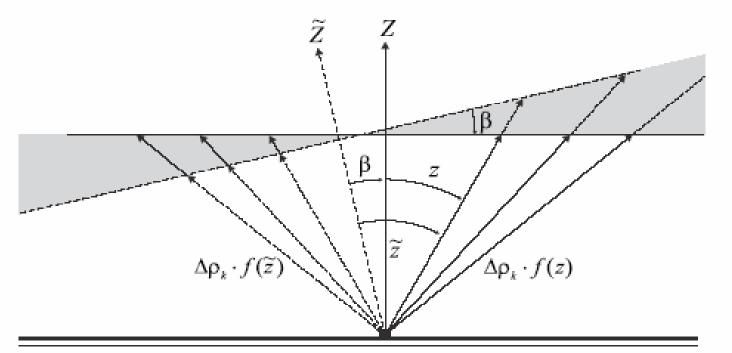

## 利用GPS反演大氣可降水 及年變化分析


葉大綱<sup>1</sup>、王傳盛<sup>1</sup>、蕭棟元<sup>2</sup>、洪景山<sup>3</sup>、蔡雅婷<sup>3</sup> 國立台北大學不動產與城鄉環境學系<sup>1</sup> 醒吾科技大學 資訊科技系<sup>2</sup> 中央氣象局 氣象資訊中心<sup>3</sup>

### GPS訊號延遲現象

- GPS衛星訊號在傳播的路徑中會穿過大氣層
  - 訊號在大氣中傳遞的速度比在真空中要慢
  - 訊號在大氣中傳播的路徑是曲線而非直線
- 對流層延遲誤差
  - 中性大氣層:包括對流層、平流層下部的氣體
- ■電離層延遲誤差
  - 電離層:包括平流層上部、中氣層、增溫層的氣體


### 司乃耳定律







- Saastamoinen的流體靜力延遲天頂方程式
- Marini的大氣延遲映射函數(Mapping Function)
- Gardner的方位不對稱模式



### 大氣延遲解決對策

$$D_{trop}^{Z} = 10^{-6} \left\{ \frac{k_{1}R}{g_{m}M_{d}} P_{s} + \int_{H}^{\infty} \left[ \left( k_{2} - k_{1} \frac{M_{w}}{M_{d}} \right) \frac{e}{T} + k_{3} \frac{e}{T^{2}} \right] dz \right\} = D_{trop,h}^{Z} + D_{trop,w}^{Z}$$

R: 莫耳氣體常數

gm: 大氣垂直空氣柱質量中心

 $M_d$ : 乾空氣莫耳質量

 $M_w$ :水氣莫耳質量

 $P_s$ : 地表總大氣壓值

■ 乾延遲:必須知道地表總大氣壓

■ 濕延遲:必須知道大氣溫度及水氣分壓



- 採用最小二乘法解算GPS觀測資料
  - 當測站座標已知,衛星位置由精密星曆得知,則測 站至衛星的幾何距離即為已知值
  - 電離層遲延量:與載波頻率的平方成反比,利用雙 頻載波無電離層線性組合消除
  - 對流層乾延遲:以大氣模式之估計值代入
  - 對流層濕延遲:以附加參數吸收剩餘的延遲量,換 句話說當作未知數在整體平差中求解



- 採用長距離基線相對定位來估算絕對量之天頂 向濕延遲量(Zenithal Wet Delay, ZWD)
  - 相對於日本TSKB站
- 藉由水氣微波輻射儀(Water Vapor Radiometer, WVR)的外部修正,來驗證並進一步提昇GPS 反演之ZWD精度
- GPS接收儀之天頂向濕延遲量與接收儀上空之可降水量(Precepitable Water Vapor, PWV)成比例關係

### 水氣微波輻射儀

- 擁有介於22~30 GHz之間的5個觀測波段
- 可觀測至10公里高的水氣剖面
- 單筆觀測時間不大於10秒
- 具有量測地表溫度、壓力、相對濕度的功能



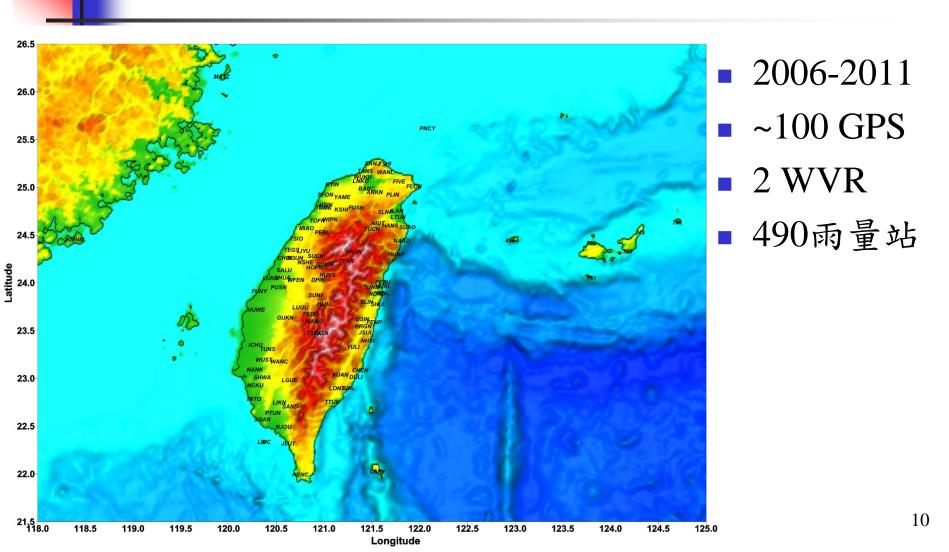


### ZWD與PWV之轉換

$$PWV = \Pi \times ZWD$$

$$\Pi = \frac{10^8}{\rho R_{\nu} \left[ \frac{k_3}{T_m} + k_2' \right]}$$

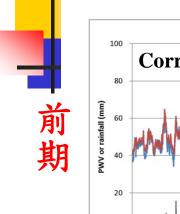
$$\rho = 1000(kg/m^3)$$
 為水的密度

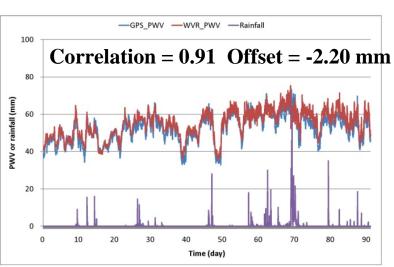

$$R_v = 461.524(J/kg \cdot K)$$
 為水汽氣體常數

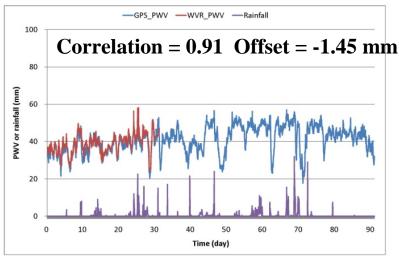
$$k_3 = (3.739 \pm 0.012) \times 10^5 (K^2/mb)$$

$$T_m = 70.2 + 0.72T_s$$
 為大氣加權平均溫度, $T_s$  為地面溫度

$$k_2' = 22.1 \pm 2.2 (K/mb)$$

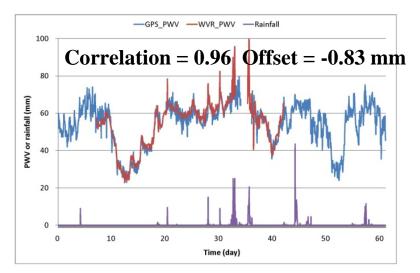

## 資料分析

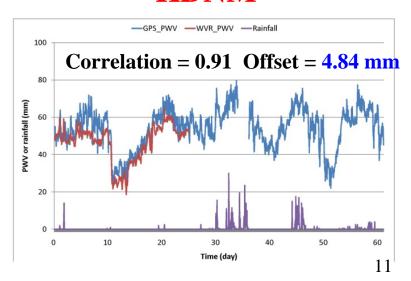




### GPS-PWV與WVR-PWV之比較

#### **PKGM**

#### **YMSM**






#### **PKGM**

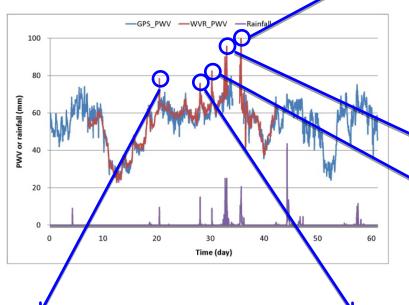
**KDNM** 

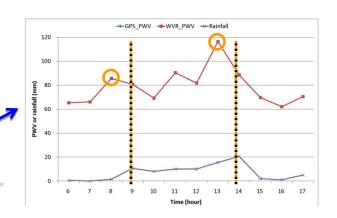


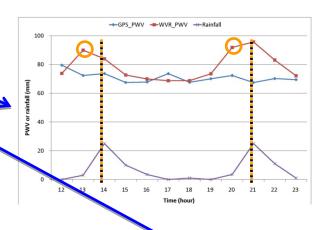


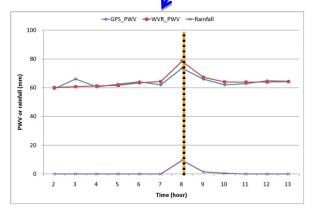
## 採用不同的計算主站

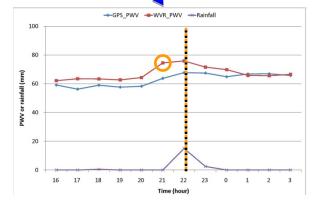
#### 相關係數

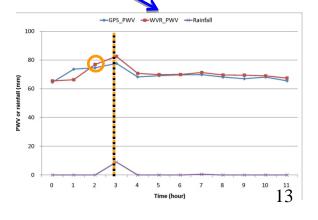

| 採用主站   | 基線距離    | PKGM | KDNM |
|--------|---------|------|------|
| 日本TSKB | 2400 km | 0.96 | 0.91 |
| 關島GUAM | 2700 km | 0.84 | 0.82 |
| 玉山YUSN | 120 km  | 0.56 | 0.49 |
| 北京BJFS | 1900 km | 0.91 | 0.90 |
| 韓國DAEJ | 1600 km | 0.93 | 0.91 |


#### 偏移量(mm)


| 採用主站   | 基線距離    | PKGM   | KDNM   |
|--------|---------|--------|--------|
| 日本TSKB | 2400 km | -0.83  | 4.84   |
| 關島GUAM | 2700 km | 5.01   | 5.57   |
| 玉山YUSN | 120 km  | -43.51 | -34.96 |
| 北京BJFS | 1900 km | -1.97  | 4.82   |
| 韓國DAEJ | 1600 km | -1.70  | 4.49   |

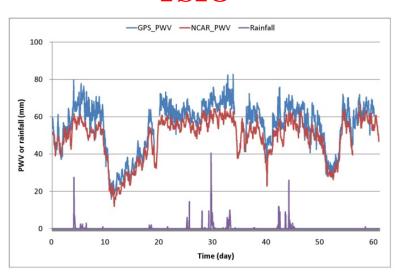

# GPS-PWV與 降雨量之比較


#### **PKGM**









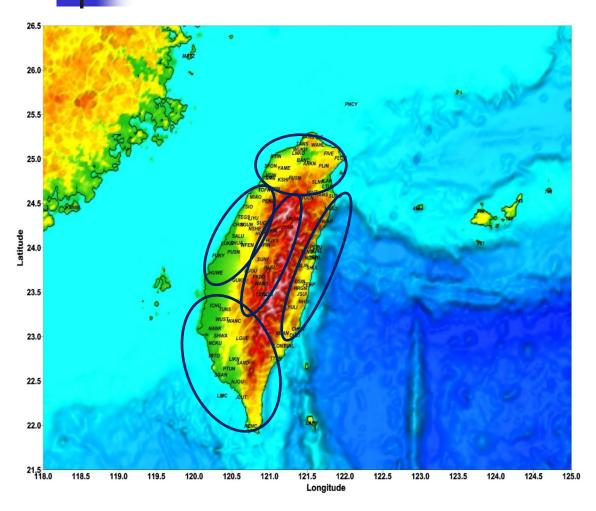




#### GPS-PWV與CWB-PWV之比較

#### **TSIO**

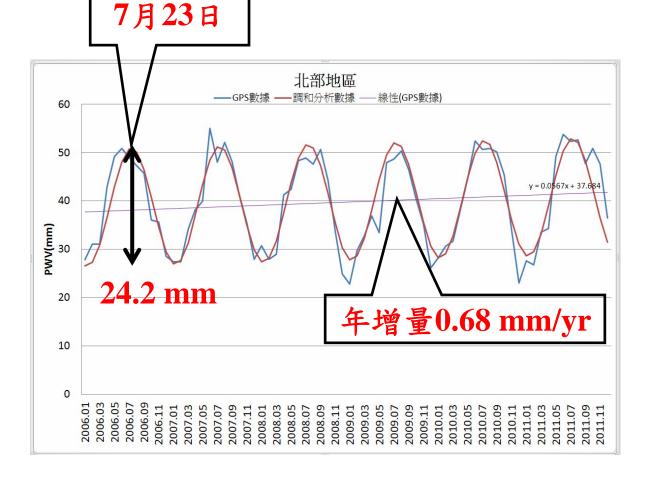



Correlation = 0.94Offset = 6.48 mm

#### **TUNS**



Correlation = 0.90Offset = 4.29 mm


### 2006~2011之PWV年變化分析



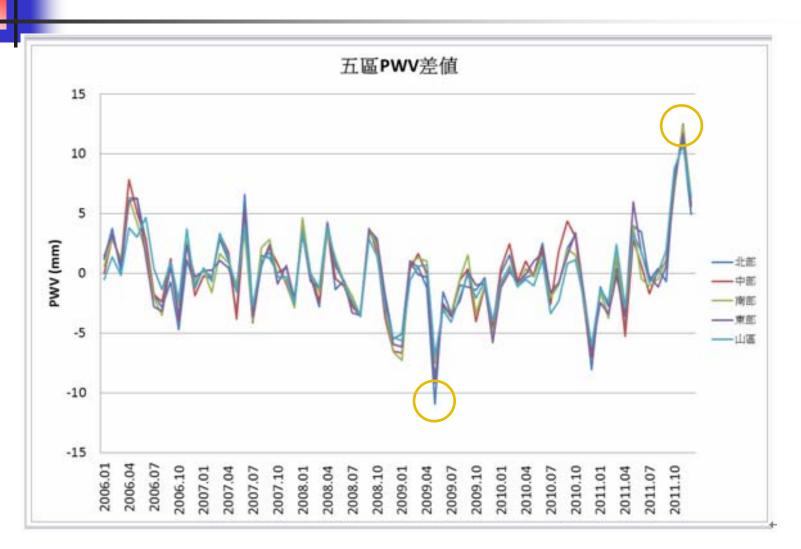
- 將測站分為五區
  - 北部地區
  - 中部地區
  - 南部地區
  - 東部地區
  - 山區

#### 以調和分析北部地區之PWV

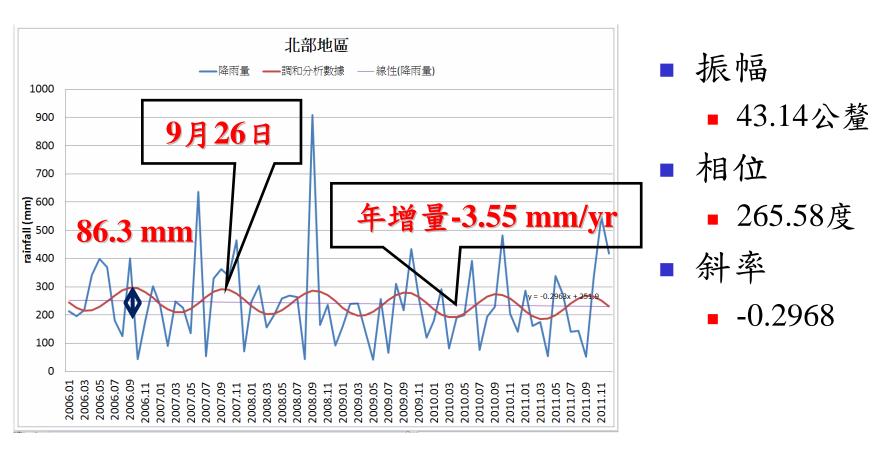


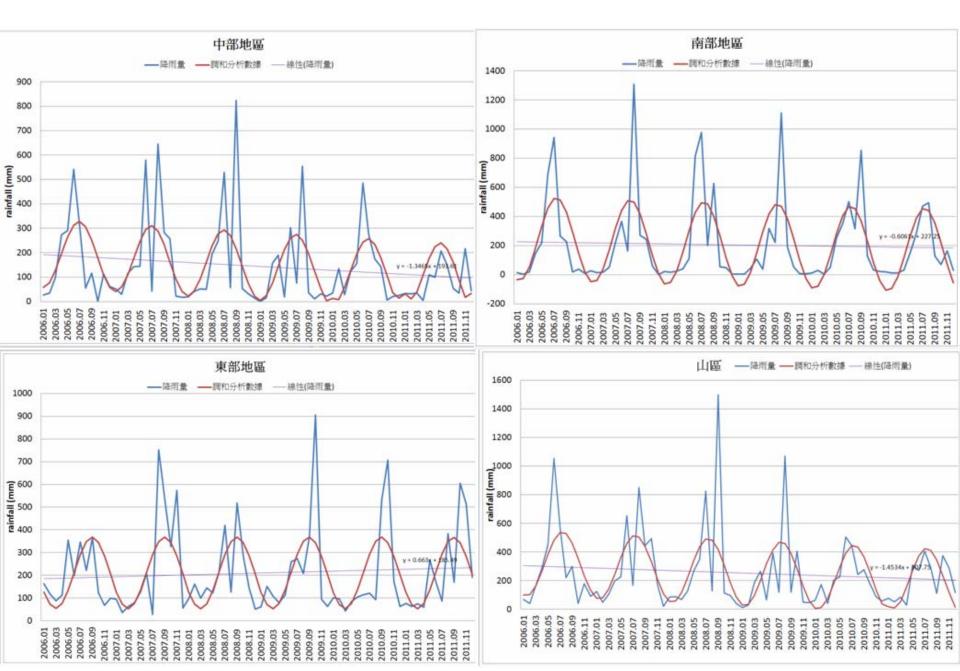


- 振幅
  - 12.10公釐
- ■相位
  - 203.87度
- 斜率
  - **0.0567**


## 以調和分析五區之PWV

|      | 振幅<br>(mm) | 相位 (deg) | 波峰時間 (月/日) | 年增量<br>(mm/yr) |
|------|------------|----------|------------|----------------|
| 北部地區 | 12.10      | 203.87   | 7/23       | 0.68           |
| 中部地區 | 13.10      | 201.29   | 7/22       | 0.83           |
| 南部地區 | 12.88      | 204.99   | 7/25       | 0.71           |
| 東部地區 | 11.53      | 207.68   | 7/28       | 0.67           |
| 山區   | 10.98      | 203.17   | 7/23       | 0.74           |


# 五區PWV之平均值(mm)


|      | 北區    | 中區    | 南區    | 東區    | 山區    | 平均值   |
|------|-------|-------|-------|-------|-------|-------|
| 2006 | 39.58 | 39.59 | 42.86 | 42.53 | 32.87 | 39.49 |
| 2007 | 39.57 | 39.11 | 42.36 | 42.15 | 32.67 | 39.17 |
| 2008 | 39.11 | 39.05 | 42.55 | 42.09 | 32.57 | 39.07 |
| 2009 | 37.56 | 37.70 | 40.92 | 40.17 | 31.08 | 37.49 |
| 2010 | 39.99 | 40.98 | 42.96 | 42.70 | 32.77 | 39.88 |
| 2011 | 42.71 | 42.97 | 45.81 | 45.36 | 36.75 | 42.72 |
| 平均值  | 39.75 | 39.90 | 42.91 | 42.50 | 33.12 |       |

### 五區PWV年變化差值



## 以調和分析北部地區之降雨量





## 以調和分析五區之降雨量

|      | 振幅<br>(mm) | 相位 (deg) | 波峰時間 (月/日) | 年增量<br>(mm/yr) |
|------|------------|----------|------------|----------------|
| 北部地區 | 43.14      | 265.58   | 9/26       | -3.55          |
| 中部地區 | 139.72     | 193.09   | 7/13       | -16.15         |
| 南部地區 | 287.77     | 206.41   | 7/27       | -7.27          |
| 東部地區 | 157.21     | 253.44   | 9/13       | 7.95           |
| 山區   | 229.27     | 207.13   | 7/28       | -17.44         |

# 五區年降雨量之總和(mm)

|      | 北區   | 中區   | 南區   | 東區   | 山區   | 平均值  |
|------|------|------|------|------|------|------|
| 2006 | 2968 | 1925 | 2592 | 2257 | 3474 | 2643 |
| 2007 | 3186 | 2330 | 2737 | 2880 | 3510 | 2929 |
| 2008 | 3142 | 2111 | 2935 | 2383 | 3688 | 2852 |
| 2009 | 2481 | 1413 | 2095 | 2686 | 2758 | 2286 |
| 2010 | 2661 | 1607 | 2547 | 2231 | 2499 | 2309 |
| 2011 | 2919 | 1013 | 1860 | 2657 | 2406 | 2171 |
| 平均值  | 2893 | 1733 | 2461 | 2516 | 3056 | 22   |

#### 大氣可降水服務網

■ 網址 http://bigsteel.no-ip.org/



### 大氣可降水服務網

- 提供2006~2011年每小時一筆之GPS-PWV資料
- 台灣本島及離島共計100個測站
- PWV在氣象預報上的應用
  - 提供資料同化、近即時天氣分析
  - 改善模式的短期定量降水預報
- PWV在誤差修正上的應用
  - GNSS定位(斷層監測、地震位移)
  - InSAR遙測(板塊變動、地層下陷)
  - 福衛三號/福衛七號資料品質校驗



- 相對精度:GPS-PWV、CWB-PWV與WVR-PWV具有高度相關性,相關係數達0.9以上
- 絕對精度:假設WVR為真值,GPS-PWV的誤差為1~2 mm,CWB-PWV的誤差為3~6 mm
- PWV與降雨量在某些案例中具有高度相關性
- 目前發現2011年GPS-PWV有異常升高的現象 ,未來持續分析長時期之PVW與降雨量資料

# 報告完畢~敬請指正~

